
Alessandro Bonifazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preferential Gs protein coupling of the galanin Gal1 receptor in the µ-opioid-Gal1 receptor heterotetramer. Pharmacological Research, 2022, 182, 106322.	7.1	11
2	Tropane-Based Ibogaine Analog Rescues Folding-Deficient Serotonin and Dopamine Transporters. ACS Pharmacology and Translational Science, 2021, 4, 503-516.	4.9	17
3	New Drugs, Old Targets: Tweaking the Dopamine System to Treat Psychostimulant Use Disorders. Annual Review of Pharmacology and Toxicology, 2021, 61, 609-628.	9.4	36
4	Chirality of Novel Bitopic Agonists Determines Unique Pharmacology at the Dopamine D3 Receptor. Biomolecules, 2021, 11, 570.	4.0	10
5	Novel Dual-Target μ-Opioid Receptor and Dopamine D ₃ Receptor Ligands as Potential Nonaddictive Pharmacotherapeutics for Pain Management. Journal of Medicinal Chemistry, 2021, 64, 7778-7808.	6.4	14
6	Scaffold Hybridization Strategy Leads to the Discovery of Dopamine D3 Receptor-Selective or Multitarget Bitopic Ligands Potentially Useful for Central Nervous System Disorders. ACS Chemical Neuroscience, 2021, 12, 3638-3649.	3.5	7
7	Structure Activity Relationships for a Series of Eticlopride-Based Dopamine D ₂ /D ₃ Receptor Bitopic Ligands. Journal of Medicinal Chemistry, 2021, 64, 15313-15333.	6.4	12
8	Chiral Cyclic Aliphatic Linkers as Building Blocks for Selective Dopamine D ₂ or D ₃ Receptor Agonists. Journal of Medicinal Chemistry, 2021, 64, 16088-16105.	6.4	7
9	2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. Journal of Medicinal Chemistry, 2020, 63, 1779-1797.	6.4	49
10	Structure–Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability. Journal of Medicinal Chemistry, 2020, 63, 2343-2357.	6.4	20
11	Evidence for a Stereoselective Mechanism for Bitopic Activity by Extended-Length Antagonists of the D ₃ Dopamine Receptor. ACS Chemical Neuroscience, 2020, 11, 3309-3320.	3.5	13
12	Structure-activity relationships for a series of (Bis(4-fluorophenyl)methyl)sulfinylethyl-aminopiperidines and -piperidine amines at the dopamine transporter: Bioisosteric replacement of the piperazine improves metabolic stability. European Journal of Medicinal Chemistry, 2020, 208, 112674.	5.5	13
13	Novel Highly Potent and Selective Sigma1 Receptor Antagonists Effectively Block the Binge Eating Episode in Female Rats. ACS Chemical Neuroscience, 2020, 11, 3107-3116.	3.5	11
14	Novel Fluorescent Ligands Enable Single-Molecule Localization Microscopy of the Dopamine Transporter. ACS Chemical Neuroscience, 2020, 11, 3288-3300.	3.5	12
15	Novel Potent Muscarinic Receptor Antagonists: Investigation on the Nature of Lipophilic Substituents in the 5- and/or 6-Positions of the 1,4-Dioxane Nucleus. Journal of Medicinal Chemistry, 2020, 63, 5763-5782.	6.4	7
16	Exception That Proves the Rule: Investigation of Privileged Stereochemistry in Designing Dopamine D3R Bitopic Agonists. ACS Medicinal Chemistry Letters, 2020, 11, 1956-1964.	2.8	10
17	Investigation of the Role of Chirality in the Interaction with σ Receptors and Effect on Binge Eating Episode of a Potent σ1 Antagonist Analogue of Spipethiane. ACS Chemical Neuroscience, 2019, 10, 3391-3397.	3.5	10
18	A Novel Bromine-Containing Paroxetine Analogue Provides Mechanistic Clues for Binding Ambiguity at the Central Primary Binding Site of the Serotonin Transporter. ACS Chemical Neuroscience, 2019, 10, 3946-3952.	3.5	9

#	Article	IF	CITATIONS
19	Investigation of Novel Primary and Secondary Pharmacophores and 3-Substitution in the Linking Chain of a Series of Highly Selective and Bitopic Dopamine D ₃ Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 2019, 62, 9061-9077.	6.4	30
20	Role of the NMDA Receptor in the Antitumor Activity of Chiral 1,4-Dioxane Ligands in MCF-7 and SKBR3 Breast Cancer Cells. ACS Medicinal Chemistry Letters, 2019, 10, 511-516.	2.8	7
21	The Significance of Chirality in Drug Design and Synthesis of Bitopic Ligands as D ₃ Receptor (D ₃ R) Selective Agonists. Journal of Medicinal Chemistry, 2019, 62, 6287-6314.	6.4	26
22	Dopamine D ₄ Receptor-Selective Compounds Reveal Structure–Activity Relationships that Engender Agonist Efficacy. Journal of Medicinal Chemistry, 2019, 62, 3722-3740.	6.4	20
23	The highly selective dopamine D R antagonist, R-VK4-40 attenuates oxycodone reward and augments analgesia in rodents. Neuropharmacology, 2019, 158, 107597.	4.1	51
24	Chemical manipulations on the 1,4-dioxane ring of 5-HT1A receptor agonists lead to antagonists endowed with antitumor activity in prostate cancer cells. European Journal of Medicinal Chemistry, 2019, 168, 461-473.	5.5	13
25	Multitarget 1,4-Dioxane Compounds Combining Favorable D ₂ -like and 5-HT _{1A} Receptor Interactions with Potential for the Treatment of Parkinson's Disease or Schizophrenia. ACS Chemical Neuroscience, 2019, 10, 2222-2228.	3.5	13
26	Novel and Potent Dopamine D ₂ Receptor Go-Protein Biased Agonists. ACS Pharmacology and Translational Science, 2019, 2, 52-65.	4.9	43
27	Opioid–galanin receptor heteromers mediate the dopaminergic effects of opioids. Journal of Clinical Investigation, 2019, 129, 2730-2744.	8.2	41
28	Novel Dopamine D4 Receptorâ€6elective Compounds Reveal Structureâ€Activity Relationships that Engender Agonist Efficacy. FASEB Journal, 2019, 33, lb40.	0.5	0
29	Pharmacological profiling of sigma 1 receptor ligands by novel receptor homomer assays. Neuropharmacology, 2018, 133, 264-275.	4.1	50
30	1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1) as a Model for the Rational Design of a Novel Class of Brain Penetrant Ligands with High Affinity and Selectivity for Dopamine D4 Receptor. Journal of Medicinal Chemistry, 2018, 61, 3712-3725.	6.4	23
31	Evidence for a Stereoselective Mechanism of Action for Nonâ€competitive Antagonism of the D3 Dopamine Receptor by Extendedâ€Length Bitopic Ligands. FASEB Journal, 2018, 32, 827.12.	0.5	Ο
32	Synthesis and Pharmacological Characterization of Novel <i>trans</i> -Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D ₃ Receptor (D ₃ R). Journal of Medicinal Chemistry, 2017, 60, 1478-1494.	6.4	44
33	Novel muscarinic acetylcholine receptor hybrid ligands embedding quinuclidine and 1,4-dioxane fragments. European Journal of Medicinal Chemistry, 2017, 137, 327-337.	5.5	14
34	Novel Bivalent Ligands Based on the Sumanirole Pharmacophore Reveal Dopamine D ₂ Receptor (D ₂ R) Biased Agonism. Journal of Medicinal Chemistry, 2017, 60, 2890-2907.	6.4	43
35	Toward Understanding the Structural Basis of Partial Agonism at the Dopamine D ₃ Receptor. Journal of Medicinal Chemistry, 2017, 60, 580-593.	6.4	49
36	Design, Synthesis, Pharmacological Evaluation and Docking Studies of GluN2Bâ€Selective NMDA Receptor Antagonists with a Benzo[7]annulenâ€7â€amine Scaffold. ChemMedChem, 2017, 12, 1212-1222.	3.2	25

#	Article	IF	CITATIONS
37	The replacement of the 2-methoxy substituent of N-((6,6-diphenyl-1,4-dioxan-2-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine improves the selectivity for 5-HT1A receptor over α1-adrenoceptor andÂD2-like receptor subtypes. European Journal of Medicinal Chemistry, 2017, 125, 233-244.	5.5	17
38	A Novel Class of Dopamine D ₄ Receptor Ligands Bearing an Imidazoline Nucleus. ChemMedChem, 2016, 11, 1819-1828.	3.2	7
39	Novel Analogues of (<i>R</i>)-5-(Methylamino)-5,6-dihydro-4 <i>H</i> -imidazo[4,5,1- <i>ij</i>]quinolin-2(1 <i>H</i>)-one (Sumanirole) Provide Clues to Dopamine D ₂ /D ₃ Receptor Agonist Selectivity. Iournal of Medicinal Chemistry, 2016, 59, 2973-2988.	6.4	33
40	Highly Selective Dopamine D ₃ Receptor (D ₃ R) Antagonists and Partial Agonists Based on Eticlopride and the D ₃ R Crystal Structure: New Leads for Opioid Dependence Treatment. Journal of Medicinal Chemistry, 2016, 59, 7634-7650.	6.4	73
41	Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10676-10691.	6.4	58
42	Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D ₂ -Like Receptor Agonist. Molecular Pharmacology, 2016, 89, 457-466.	2.3	62
43	Using click chemistry toward novel 1,2,3-triazole-linked dopamine D3 receptor ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 4000-4012.	3.0	29
44	Novel Potent <i>N</i> -Methyl- <scp>d</scp> -aspartate (NMDA) Receptor Antagonists or σ ₁ Receptor Ligands Based on Properly Substituted 1,4-Dioxane Ring. Journal of Medicinal Chemistry, 2015, 58, 8601-8615.	6.4	22
45	Benzo[7]annulene-based GluN2B selective NMDA receptor antagonists: Surprising effect of a nitro group in 2-position. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5748-5751.	2.2	15
46	Cross-talk between alpha1D-adrenoceptors and transient receptor potential vanilloid type 1 triggers prostate cancer cell proliferation. BMC Cancer, 2014, 14, 921.	2.6	35
47	Synthesis, CluN2B affinity and selectivity of benzo[7]annulen-7-amines. Bioorganic and Medicinal Chemistry, 2014, 22, 6638-6646.	3.0	19
48	CluN2Bâ€Selective <i>N</i> â€Methylâ€ <scp>dâ€</scp> aspartate (NMDA) Receptor Antagonists Derived from 3â€Benzazepines: Synthesis and Pharmacological Evaluation of Benzo[7]annulenâ€7â€amines. ChemMedChem, 2014, 9, 741-751.	3.2	23
49	Synthesis and Biological Evaluation of a Novel Series of Heterobivalent Muscarinic Ligands Based on Xanomeline and 1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1). Journal of Medicinal Chemistry, 2014, 57, 9065-9077.	6.4	24
50	Chiral Resolution and Serendipitous Fluorination Reaction for the Selective Dopamine D3 Receptor Antagonist BAK2-66. ACS Medicinal Chemistry Letters, 2014, 5, 647-651.	2.8	13
51	Mode of interaction of 1,4-dioxane agonists at the M2 and M3 muscarinic receptor orthosteric sites. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3255-3259.	2.2	10
52	Structure–Activity Relationships in 1,4-Benzodioxan-Related Compounds. 11. Reversed Enantioselectivity of 1,4-Dioxane Derivatives in α ₁ -Adrenergic and 5-HT _{1A} Receptor Binding Sites Recognition. Journal of Medicinal Chemistry, 2013, 56, 584-588.	6.4	19
53	1,4-Dioxane, a Suitable Scaffold for the Development of Novel M ₃ Muscarinic Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 1783-1787.	6.4	20
54	Favourable involvement of α2A-adrenoreceptor antagonism in the I2-imidazoline binding sites-mediated morphine analgesia enhancement. Bioorganic and Medicinal Chemistry, 2012, 20, 2259-2265.	3.0	39