
Kanashiro Rm, Kanashiro-Takeuchi Rm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891930/publications.pdf

Version: 2024-02-01

Kanashiro Rm,

#	Article	IF	CITATIONS
1	<i>cKit</i> ⁺ cardiac progenitors of neural crest origin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13051-13056.	3.3	104
2	Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2604-2609.	3.3	95
3	Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4138-46.	3.3	63
4	Sexâ€ 5 pecific Impact of Aldosterone Receptor Antagonism on Ventricular Remodeling and Gene Expression after Myocardial Infarction. Clinical and Translational Science, 2009, 2, 134-142.	1.5	62
5	Activation of growth hormone releasing hormone (GHRH) receptor stimulates cardiac reverse remodeling after myocardial infarction (MI). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 559-563.	3.3	58
6	<i>S</i> â€Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. Journal of the American Heart Association, 2015, 4, .	1.6	43
7	Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 51, 619-625.	0.9	40
8	Agonists of growth hormone-releasing hormone stimulate self-renewal of cardiac stem cells and promote their survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17260-17265.	3.3	36
9	C-Kit+Cells Isolated from Developing Kidneys Are a Novel Population of Stem Cells with Regenerative Potential. Stem Cells, 2013, 31, 1644-1656.	1.4	33
10	Growth Hormone–Releasing Hormone Agonists Reduce Myocardial Infarct Scar in Swine With Subacute Ischemic Cardiomyopathy. Journal of the American Heart Association, 2015, 4, .	1.6	26
11	New therapeutic approach to heart failure due to myocardial infarction based on targeting growth hormone-releasing hormone receptor. Oncotarget, 2015, 6, 9728-9739.	0.8	23
12	Soluble Klotho, a biomarker and therapeutic strategy to reduce bronchopulmonary dysplasia and pulmonary hypertension in preterm infants. Scientific Reports, 2020, 10, 12368.	1.6	22
13	Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight, 2019, 4, .	2.3	18
14	Therapeutic potential of AAV9-S15D-RLC gene delivery in humanized MYL2 mouse model of HCM. Journal of Molecular Medicine, 2019, 97, 1033-1047.	1.7	15
15	Ablation of the N terminus of cardiac essential light chain promotes the superâ€relaxed state of myosin and counteracts hypercontractility in hypertrophic cardiomyopathy mutant mice. FEBS Journal, 2020, 287, 3989-4004.	2.2	15
16	Growth hormone-releasing hormone agonists ameliorate chronic kidney disease-induced heart failure with preserved ejection fraction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
17	Synthetic growth hormone-releasing hormone agonist ameliorates the myocardial pathophysiology characteristic of heart failure with preserved ejection fraction. Cardiovascular Research, 2023, 118, 3586-3601.	1.8	9
18	Sâ€Nitrosoglutathione Reductase Deficiency Causes Aberrant Placental Sâ€Nitrosylation and Preeclampsia. Journal of the American Heart Association, 2022, 11, e024008.	1.6	7

Kanashiro Rm,

#	Article	IF	CITATIONS
19	Effects of Combination of Proliferative Agents and Erythropoietin on Left Ventricular Remodeling Post–Myocardial Infarction. Clinical and Translational Science, 2011, 4, 168-174.	1.5	5
20	Systemic delivery of large-scale manufactured Wharton's Jelly mesenchymal stem cell-derived extracellular vesicles improves cardiac function after myocardial infarction. , 2022, 2, .		4
21	Pigmentation Affects Elastic Fiber Patterning and Biomechanical Behavior of the Murine Aortic Valve. Frontiers in Cardiovascular Medicine, 2021, 8, 754560.	1.1	1
22	Growth Hormone Releasing Hormone (GHRH) Agonist Improves Cardiac Performance in the Chronic Model of Myocardial Infarction (MI) in Rats. Journal of Cardiac Failure, 2010, 16, S2.	0.7	0
23	Allogeneic Mesenchymal Stem Cells with or without Platelet Rich Plasma in the Treatment of Medial Collateral Ligament Injury in Rats: An Experimental Laboratory Study. Journal of Orthopedics Rheumatology and Sports Medicine, 0, , .	0.0	0