Jinsong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891866/publications.pdf

Version: 2024-02-01

136	7,250	43	81
papers	citations	h-index	g-index
139	139	139	12621
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<scp>ZIF</scp> â€Mediated Anchoring of Co species on Nâ€doped CarbonÂNanorods as an Efficient Cathode Catalyst for Znâ€Air Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	12
2	A Flash Vacuumâ€Induced Reaction in Preparing High Performance Thermoelectric Cu ₂ S. Advanced Functional Materials, 2022, 32, 2107284.	7.8	11
3	The Highâ€Pressure Processed Cu ₂ S: Phase Intergrowth with Strained Lamella Leading to an Improved Thermoelectric Performance. Advanced Electronic Materials, 2022, 8, 2100835.	2.6	5
4	Enhancing Thermoelectric Performance of AgSbTe ₂ -Based Compounds <i>via</i> Microstructure Modulation Combining with Entropy Engineering. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3057-3065.	4.0	7
5	Ferroelectric engineering: Enhanced thermoelectric performance by local structural heterogeneity. Science China Materials, 2022, 65, 1615-1622.	3.5	6
6	A Strainâ€Relaxation Red Phosphorus Freestanding Anode for Nonâ€Aqueous Potassium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	40
7	Interfacial gliding-driven lattice oxygen release in layered cathodes. Cell Reports Physical Science, 2022, 3, 100695.	2.8	5
8	Unraveling the reaction mechanisms of electrode materials for sodiumâ€ion and potassiumâ€ion batteries by in situ transmission electron microscopy. , 2022, 1, 196-212.		54
9	Confined Ultrafine Pt in Porous Carbon Fibers and Their N-Enhanced Heavy d-Ï€ Effect. Chemistry of Materials, 2022, 34, 3705-3714.	3.2	28
10	Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. Journal of the American Chemical Society, 2022, 144, 4942-4951.	6.6	67
11	The Coupling of Local Strain and K ⁺ â€lon Release Induced Phase Transition Heterogeneity in Tunnel MnO ₂ . Advanced Functional Materials, 2022, 32, .	7.8	11
12	Phase boundary mapping and suppressing Pb vacancies for enhanced thermoelectric properties in n-type Sb doped PbTe compounds. Materials Today Energy, 2022, 25, 100962.	2.5	4
13	The role of Ge vacancies and Sb doping in GeTe: A Comparative Study of Thermoelectric Transport Properties in SbxGe1-1.5xTe and SbxGe1-xTe Compounds. Materials Today Physics, 2022, 24, 100682.	2.9	7
14	Pt Single Atom-Induced Activation Energy and Adsorption Enhancement for an Ultrasensitive ppb-Level Methanol Gas Sensor. ACS Sensors, 2022, 7, 199-206.	4.0	36
15	Suppressing the Jahn–Teller Effect in Mnâ€Based Layered Oxide Cathode toward Longâ€Life Potassiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	52
16	Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nature Catalysis, 2022, 5, 300-310.	16.1	175
17	Electrically Tunable Antiferroelectric to Paraelectric Switching in a Semiconductor. Nano Letters, 2022, 22, 4083-4089.	4.5	4
18	Submerged-Plant-Inspired Five-Level-Synergetic hierarchical Single-Fe-Atom-Doped Micro-Electrodes for High-Performance multifunctional electrocatalysis. Chemical Engineering Journal, 2022, 446, 136804.	6.6	3

#	Article	IF	Citations
19	Anomalous dielectric relaxation peak in Nb-doped SrTiO3 single crystals. Ceramics International, 2022, 48, 24725-24732.	2.3	3
20	Atomized Copper-Decorated Nitrogen-Doped Porous Carbon Fibers as a Self-Standing Air Cathode for Flexible Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 7664-7676.	3.2	9
21	In Situ Atomicâ€Scale Observation of Electrochemical (De)potassiation in Te Nanowires. Small, 2022, 18, .	5.2	6
22	Modulating the valence of Ga and the deep level impurity for high thermoelectric performance of n-type Pb0.98Ga0.02Te1-xSex compounds. Materials Today Physics, 2022, 27, 100766.	2.9	3
23	Avoiding Oxygen induced Pb vacancies for High Thermoelectric Performance of n-type Bi-doped Pb1-xBixTe Compounds. Materials Today Physics, 2022, , 100781.	2.9	3
24	A hybrid lithium storage mechanism of hard carbon enhances its performance as anodes for lithium-ion batteries. Carbon, 2021, 178, 443-450.	5.4	53
25	Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Science China Materials, 2021, 64, 1507-1520.	3.5	20
26	Surface Oxidation Layer-Mediated Conformal Carbon Coating on Si Nanoparticles for Enhanced Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3991-3998.	4.0	51
27	Atomic mechanism of ionic confinement in the thermoelectric Cu2Se based on a low-cost electric-current method. Cell Reports Physical Science, 2021, 2, 100345.	2.8	12
28	The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics. Nature Communications, 2021, 12, 881.	5.8	82
29	An Instant Change of Elastic Lattice Strain during Cu ₂ Se Phase Transition: Origin of Abnormal Thermoelectric Properties. Advanced Functional Materials, 2021, 31, 2100431.	7.8	24
30	In Situ, Atomicâ€Resolution Observation of Lithiation and Sodiation of WS ₂ Nanoflakes: Implications for Lithiumâ€ion and Sodiumâ€ion Batteries. Small, 2021, 17, e2100637.	5.2	22
31	Solvent-Free Encapsulation of Ultrafine SnO ₂ Nanoparticles in N-Doped Carbon for High-Capacity and Durable Lithium Storage. ACS Applied Energy Materials, 2021, 4, 6277-6283.	2.5	10
32	Temperature-insensitive PMN-PZ-PT ferroelectric ceramics for actuator applications. Acta Materialia, 2021, 211, 116871.	3.8	23
33	Lithium/Sodiumâ€lon Batteries: In Situ, Atomicâ€Resolution Observation of Lithiation and Sodiation of WS ₂ Nanoflakes: Implications for Lithiumâ€lon and Sodiumâ€lon Batteries (Small 24/2021). Small, 2021, 17, 2170120.	5.2	0
34	Direct Visualization of Atomic-Scale Heterogeneous Structure Dynamics in MnO ₂ Nanowires. ACS Applied Materials & Interfaces, 2021, 13, 33644-33651.	4.0	9
35	Hierarchically Fractal PtPdCu Sponges and their Directed Mass- and Electron-Transfer Effects. Nano Letters, 2021, 21, 7870-7878.	4.5	47
36	A New Germanium-Based Anode Material with High Stability for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11883-11890.	3.2	12

#	Article	IF	Citations
37	Solid Solution of Bi and Sb for Robust Lithium Storage Enabled by Consecutive Alloying Reaction. Small, 2021, 17, e2102915.	5.2	7
38	A Durable Ni–Zn Microbattery with Ultrahighâ€Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. Small, 2021, 17, e2103136.	5. 2	11
39	Phaseâ€Transformationâ€Induced Giant Deformation in Thermoelectric Ag ₂ Se Semiconductor. Advanced Functional Materials, 2021, 31, 2106938.	7.8	13
40	Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87, 106153.	8.2	76
41	Zn-Induced Defect Complexity for the High Thermoelectric Performance of n-Type PbTe Compounds. ACS Applied Materials & Defect Compounds. ACS Applied Materials & Defect Compounds.	4.0	16
42	Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. Journal of Colloid and Interface Science, 2021, 601, 378-384.	5.0	27
43	Bridging the miscibility gap towards higher thermoelectric performance of PbS. Acta Materialia, 2021, 220, 117337.	3.8	17
44	Rapid collagen-directed mineralization of calcium fluoride nanocrystals with periodically patterned nanostructures. Nanoscale, 2021, 13, 8293-8303.	2.8	11
45	Single-atom silver loaded on tungsten oxide with oxygen vacancies for high performance triethylamine gas sensors. Journal of Materials Chemistry A, 2021, 9, 8704-8710.	5.2	69
46	Fast ion transport for synthesis and stabilization of \hat{l}^2 -Zn4Sb3. Nature Communications, 2021, 12, 6077.	5. 8	9
47	Subâ€Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials. Small, 2021, 17, e2104649.	5.2	9
48	Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. Matter, 2021, 4, 4006-4021.	5 . 0	50
49	Liquid Phaseâ€Induced Solid Solution Phase Mechanisms for Highly Stable and Ultrafast Energy Storage. Advanced Energy Materials, 2021, 11, 2102342.	10.2	6
50	Serial cracking in Van der Waals layered electrodes mediated by electrochemical reaction and mechanical deformation. Cell Reports Physical Science, 2021, 2, 100642.	2.8	3
51	Enhancing the Thermoelectric and Mechanical Properties of Bi _{0.5} Sb _{1.5} Te ₃ Modulated by the Texture and Dense Dislocation Networks. ACS Applied Materials & Dense	4.0	13
52	Removing the Oxygen-Induced Donor-like Effect for High Thermoelectric Performance in n-Type Bi ₂ Te ₃ -Based Compounds. ACS Applied Materials & Interfaces, 2021, 13, 60216-60226.	4.0	15
53	Subâ€Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials (Small 49/2021). Small, 2021, 17, .	5.2	1
54	Electroresistance in multipolar antiferroelectric Cu2Se semiconductor. Nature Communications, 2021, 12, 7207.	5.8	7

#	Article	IF	CITATIONS
55	K ⁺ modulated K ⁺ /vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries. Energy and Environmental Science, 2020, 13, 3129-3137.	15.6	92
56	Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries. Journal of Materials Chemistry A, 2020, 8, 18079-18086.	5.2	40
57	Realizing High Thermoelectric Performance in Sb-Doped Ag ₂ Te Compounds with a Low-Temperature Monoclinic Structure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39425-39433.	4.0	35
58	Confining Ultrafine MoO ₂ in a Carbon Matrix Enables Hybrid Li Ion and Li Metal Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40648-40654.	4.0	40
59	Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu ₂ Se Composites. Advanced Materials, 2020, 32, e2003730.	11.1	99
60	Enveloping SiO _x in N-doped carbon for durable lithium storage <i>via</i> an eco-friendly solvent-free approach. Journal of Materials Chemistry A, 2020, 8, 13285-13291.	5.2	65
61	Identifying the Origins of High Thermoelectric Performance in Group IIIA Element Doped PbS. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14203-14212.	4.0	12
62	Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2020, 56, 4488-4491.	2.2	35
63	FeN _x and γ-Fe ₂ O ₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium. Journal of Materials Chemistry A, 2020, 8, 6076-6082.	5. 2	40
64	Engineering Mesoporous Structure in Amorphous Carbon Boosts Potassium Storage with High Initial Coulombic Efficiency. Nano-Micro Letters, 2020, 12, 148.	14.4	81
65	Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage. Nano Energy, 2020, 73, 104758.	8.2	31
66	Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge ₉ Sb ₂ Te _{12–<i>x</i>} Compounds. ACS Applied Materials & Interfaces, 2020, 12, 19664-19673.	4.0	47
67	High-Voltage Cycling Induced Thermal Vulnerability in LiCoO ₂ Cathode: Cation Loss and Oxygen Release Driven by Oxygen Vacancy Migration. ACS Nano, 2020, 14, 6181-6190.	7.3	144
68	Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries. Nano Energy, 2019, 64, 103936.	8.2	47
69	Shape regulation of high-index facet nanoparticles by dealloying. Science, 2019, 365, 1159-1163.	6.0	108
70	Sodium storage in hard carbon with curved graphene platelets as the basic structural units. Journal of Materials Chemistry A, 2019, 7, 3327-3335.	5.2	113
71	Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nature Catalysis, 2019, 2, 423-430.	16.1	368
72	Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage. Nature Communications, 2019, 10, 1692.	5 . 8	68

#	Article	IF	CITATIONS
73	Mapping Hot Spots at Heterogeneities of Few-Layer Ti ₃ C ₂ MXene Sheets. ACS Nano, 2019, 13, 3301-3309.	7.3	29
74	Ambient oxidation of Ti ₃ C ₂ MXene initialized by atomic defects. Nanoscale, 2019, 11, 23330-23337.	2.8	147
75	Strain-Induced Metastable Phase Stabilization in Ga ₂ O ₃ Thin Films. ACS Applied Materials & amp; Interfaces, 2019, 11, 5536-5543.	4.0	42
76	Cu-Substituted NiF ₂ as a Cathode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 647-654.	4.0	36
77	In-situ growth of graphene decorated Ni3S2 pyramids on Ni foam for high-performance overall water splitting. Applied Surface Science, 2019, 465, 772-779.	3.1	39
78	Pulsed Laser Deposition and Characterization of Heteroepitaxial LiMn ₂ O ₄ /La _{0.5} Sr _{0.5} CoO ₃ Bilayer Thin Films as Model Lithium Ion Battery Cathodes. ACS Applied Nano Materials, 2018, 1, 642-653.	2.4	18
79	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule, 2018, 2, 184-193.	11.7	300
80	Dynamic imaging of metastable reaction pathways in lithiated cobalt oxide electrodes. Nano Energy, 2018, 44, 15-22.	8.2	24
81	Anisotropic Lithiation and Sodiation of ReS2 Studied by In-situ TEM. Microscopy and Microanalysis, 2018, 24, 1570-1571.	0.2	2
82	Thin Film RuO ₂ Lithiation: Fast Lithiumâ€lon Diffusion along the Interface. Advanced Functional Materials, 2018, 28, 1805723.	7.8	11
83	Aqueous Stable Ti ₃ C ₂ MXene Membrane with Fast and Photoswitchable Nanofluidic Transport. ACS Nano, 2018, 12, 12464-12471.	7.3	165
84	Correlating Photoluminescence and Structural Properties of Uncapped and GaAs-Capped Epitaxial InGaAs Quantum Dots. Scientific Reports, 2018, 8, 7514.	1.6	11
85	Spectroscopic and Microscopic Evidence of Biomediated HgS Species Formation from Hg(II)–Cysteine Complexes: Implications for Hg(II) Bioavailability. Environmental Science & Echnology, 2018, 52, 10030-10039.	4.6	44
86	Meltâ€Centrifuged (Bi,Sb) ₂ Te ₃ : Engineering Microstructure toward High Thermoelectric Efficiency. Advanced Materials, 2018, 30, e1802016.	11.1	133
87	Revealing the Effects of Electrode Crystallographic Orientation on Battery Electrochemistry <i>via</i> the Anisotropic Lithiation and Sodiation of ReS ₂ . ACS Nano, 2018, 12, 7875-7882.	7.3	28
88	Lithium Electrochemistry of WS2 Nanoflakes Studied by In-situ TEM. Microscopy and Microanalysis, 2018, 24, 1860-1861.	0.2	4
89	Origin of Fractureâ€Resistance to Large Volume Change in Cuâ€Substituted Co ₃ O ₄ Electrodes. Advanced Materials, 2018, 30, 1704851.	11.1	29
90	A review of the growth, doping, and applications of Beta-Ga2O3 thin films. , 2018, , .		31

#	Article	IF	Citations
91	NiSe ₂ pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. Journal of Materials Chemistry A, 2017, 5, 3981-3986.	5.2	67
92	Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion. Nano Letters, 2017, 17, 2539-2546.	4.5	81
93	Reversible Li-lon Conversion Reaction for a Ti _{<i>x</i>} Ge Alloy in a Ti/Ge Multilayer. ACS Applied Materials & Diterfaces, 2017, 9, 8169-8176.	4.0	14
94	Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries. Nano Energy, 2017, 38, 342-349.	8.2	151
95	Revealing the Conversion Mechanism of Transition Metal Oxide Electrodes during Lithiation from First-Principles. Chemistry of Materials, 2017, 29, 9011-9022.	3.2	60
96	Deterministic Symmetry Breaking of Plasmonic Nanostructures Enabled by DNA-Programmable Assembly. Nano Letters, 2017, 17, 5830-5835.	4.5	19
97	In-situ Electron Diffraction Studies of Sodium Electrochemistry in MoS2. Microscopy and Microanalysis, 2017, 23, 2050-2051.	0.2	0
98	Lithiation of multilayer Ni/NiO electrodes: criticality of nickel layer thicknesses on conversion reaction kinetics. Physical Chemistry Chemical Physics, 2017, 19, 20029-20039.	1.3	17
99	Exfoliated MoS ₂ nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage. Journal of Materials Chemistry A, 2017, 5, 355-363.	5.2	70
100	Dynamics of Electrochemical Conversion of Nanoscale Metal-Metal Oxide Multilayer Architecture. Microscopy and Microanalysis, 2016, 22, 1316-1317.	0.2	1
101	Atomic-resolution in-situ TEM Studies of Lithium Electrochemistry in Co3O4-Carbon Nanotube Nanocomposite. Microscopy and Microanalysis, 2016, 22, 762-763.	0.2	0
102	Synergistic sodiation of cobalt oxide nanoparticles and conductive carbon nanotubes (CNTs) for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8669-8675.	5.2	30
103	Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. ACS Nano, 2016, 10, 5440-5445.	7.3	163
104	Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5530-5535.	3.3	211
105	Ag–Ag ₂ S Hybrid Nanoprisms: Structural <i>versus</i> Plasmonic Evolution. ACS Nano, 2016, 10, 5362-5373.	7.3	64
106	Carbon-Coated Nickel Phosphide Nanosheets as Efficient Dual-Electrocatalyst for Overall Water Splitting. ACS Applied Materials & ACS Applied Materials & ACS Applied Materials & ACS Applied Ma	4.0	113
107	Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism. ACS Nano, 2016, 10, 8788-8795.	7.3	155
108	Ternary Metal Phosphide with Tripleâ€Layered Structure as a Lowâ€Cost and Efficient Electrocatalyst for Bifunctional Water Splitting. Advanced Functional Materials, 2016, 26, 7644-7651.	7.8	389

#	Article	IF	Citations
109	Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19979-19986.	4.0	26
110	Dimensionally Controlled Lithiation of Chromium Oxide. Chemistry of Materials, 2016, 28, 47-54.	3.2	18
111	Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability. ACS Applied Materials & Diterfaces, 2016, 8, 1992-2000.	4.0	360
112	Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single‣ayer Graphene. Advanced Energy Materials, 2015, 5, 1500646.	10.2	72
113	Nanoscale 3D Refractive Indices Mapping on Native Cheek Cells by Axial Scanning Transmission Electron Tomography. Microscopy and Microanalysis, 2015, 21, 405-406.	0.2	0
114	Reaction Mechanism and Kinetic of Graphene Supported Co3O4 Nanocubes with Lithium and Magnesium Studied by in situ TEM. Microscopy and Microanalysis, 2015, 21, 1197-1198.	0.2	1
115	Real-time Observation of Electrochemical Sodiation of C03O4/CNTS by in-situ Transmission Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 1811-1812.	0.2	0
116	Using Scanning-Probe Block Copolymer Lithography and Electron Microscopy To Track Shape Evolution in Multimetallic Nanoclusters. ACS Nano, 2015, 9, 12137-12145.	7.3	21
117	Spectroscopic Characterization of TiO ₂ Polymorphs in Wastewater Treatment and Sediment Samples. Environmental Science and Technology Letters, 2015, 2, 12-18.	3.9	33
118	Combined Toxicity of Nano-ZnO and Nano-TiO ₂ : From Single- to Multinanomaterial Systems. Environmental Science & Env	4.6	139
119	Atomic gold–enabled three-dimensional lithography for silicon mesostructures. Science, 2015, 348, 1451-1455.	6.0	82
120	Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	7
121	Size as a Parameter to Stabilize New Phases: Rock Salt Phases of Pb _{<i>m</i>} Sb _{2<i>n</i>} Se _{<i>m</i>} 15, 137, 9937-9942.	6.6	18
122	Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM. Scientific Reports, 2014, 4, 3863.	1.6	83
123	Tackling Reversible Conversion Reaction Mechanism for Lithium Based Battery. Microscopy and Microanalysis, 2014, 20, 1618-1619.	0.2	4
124	Isotropic to Anisotropic Transition Observed in Si Nanoparticles Lithiation by in situ TEM. Microscopy and Microanalysis, 2014, 20, 1652-1653.	0.2	0
125	Nanoscale structure of Ti _{$1\hat{a}^*$<i>x</i>x<!--</td--><td>1.2</td><td>0</td>}	1.2	0
126	Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. Journal of Physical Chemistry Letters, 2012, 3, 1824-1829.	2.1	450

#	Article	IF	CITATIONS
127	Electron-beam activated thermal sputtering of thermoelectric materials. Journal of Applied Physics, 2011, 110, 044325.	1.1	1
128	Construction of an organic crystal structural model based on combined electron and powder X-ray diffraction data and the charge flipping algorithm. Ultramicroscopy, 2011, 111, 812-816.	0.8	4
129	Growth of rutile TiO ₂ nanorods on anatase TiO ₂ thin films on Si-based substrates. Journal of Materials Research, 2011, 26, 1646-1652.	1.2	43
130	Vertical Organic Nanowire Arrays: Controlled Synthesis and Chemical Sensors. Journal of the American Chemical Society, 2009, 131, 3158-3159.	6.6	155
131	Nanocrystals of the Quaternary Thermoelectric Materials: AgPb _m SbTe _{m+2} (m = 1–18): Phaseâ€6egregated or Solid Solutions?. Advanced Materials, 2008, 20, 3638-3642.	11.1	70
132	The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition. Applied Physics Letters, 2008, 92, 063107.	1.5	40
133	Imaging of magnetic colloids under the influence of magnetic field by cryogenic transmission electron microscopy. Applied Physics Letters, 2008, 93, 082505.	1.5	5
134	Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nature Materials, 2006, 5, 647-652.	13.3	68
135	Diffractive electron imaging of nanoparticles on a substrate. Nature Materials, 2005, 4, 912-916.	13.3	30
136	Low-Dose, Low-Temperature Convergent-Beam Electron Diffraction and Multiwavelength Analysis of Hydrocarbon Films by Electron Diffraction. Microscopy and Microanalysis, 2003, 9, 428-441.	0.2	3