
Dirk Krüger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891716/publications.pdf Version: 2024-02-01

DIDK KDÃ14CED

#	Article	IF	CITATIONS
1	Animal Evolution and the Molecular Signature of Radiations Compressed in Time. Science, 2005, 310, 1933-1938.	12.6	357
2	Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 2016, 25, 4059-4074.	3.9	297
3	Preserving Accuracy in GenBank. Science, 2008, 319, 1616-1616.	12.6	198
4	Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. Forest Ecology and Management, 2017, 391, 86-95.	3.2	151
5	Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity, 2016, 77, 367-379.	12.3	140
6	Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi. PLoS ONE, 2014, 9, e88141.	2.5	129
7	A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Scientific Reports, 2015, 5, 9456.	3.3	101
8	Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils. PLoS ONE, 2014, 9, e95557.	2.5	91
9	Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME Journal, 2018, 12, 289-295.	9.8	90
10	Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe. Scientific Reports, 2014, 4, 7014.	3.3	65
11	Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests. PLoS ONE, 2014, 9, e93700.	2.5	65
12	Spatial Distribution of Fungal Communities in an Arable Soil. PLoS ONE, 2016, 11, e0148130.	2.5	63
13	Changes within a single land-use category alter microbial diversity and community structure: Molecular evidence from wood-inhabiting fungi in forest ecosystems. Journal of Environmental Management, 2014, 139, 109-119.	7.8	61
14	Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biology and Biochemistry, 2012, 50, 1-11.	8.8	60
15	Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. Forest Ecology and Management, 2016, 382, 129-142.	3.2	58
16	Effects of Forest Management Practices in Temperate Beech Forests on Bacterial and Fungal Communities Involved in Leaf Litter Degradation. Microbial Ecology, 2015, 69, 905-913.	2.8	56
17	Are correlations between deadwood fungal community structure, wood physico-chemical properties and lignin-modifying enzymes stable across different geographical regions?. Fungal Ecology, 2016, 22, 98-105.	1.6	47
18	Correlations between the composition of modular fungal communities and litter decomposition-associated ecosystem functions. Fungal Ecology, 2016, 22, 106-114.	1.6	46

Dirk Krüger

#	Article	IF	CITATIONS
19	Determinants of Deadwood-Inhabiting Fungal Communities in Temperate Forests: Molecular Evidence From a Large Scale Deadwood Decomposition Experiment. Frontiers in Microbiology, 2018, 9, 2120.	3.5	43
20	The Lycoperdales. A molecular approach to the systematics of some gasteroid mushrooms. Mycologia, 2001, 93, 947-957.	1.9	42
21	Basidiomycetous Yeasts from Boletales Fruiting Bodies and Their Interactions with the Mycoparasite Sepedonium chrysospermum and the Host Fungus Paxillus. Microbial Ecology, 2012, 63, 295-303.	2.8	42
22	Secondary structure of ITS2 rRNA provides taxonomic characters for systematic studies — a case in Lycoperdaceae (Basidiomycota). Mycological Research, 2008, 112, 316-330.	2.5	35
23	Resource Type and Availability Regulate Fungal Communities Along Arable Soil Profiles. Microbial Ecology, 2015, 70, 390-399.	2.8	32
24	Chilenopeptins A and B, Peptaibols from the Chilean <i>Sepedonium</i> aff. <i>chalcipori</i> KSH 883. Journal of Natural Products, 2016, 79, 929-938.	3.0	32
25	Comparing fungal richness and community composition in coarse woody debris in Central European beech forests under three types of management. Mycological Progress, 2014, 13, 959-964.	1.4	31
26	Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecology, 2013, 6, 527-538.	1.6	27
27	Increasing N deposition impacts neither diversity nor functions of deadwoodâ€inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function. Environmental Microbiology, 2018, 20, 1693-1710.	3.8	26
28	Patterns of laccase and peroxidases in coarse woody debris of Fagus sylvatica, Picea abies and Pinus sylvestris and their relation to different wood parameters. European Journal of Forest Research, 2016, 135, 109-124.	2.5	24
29	Home-Field Advantage in Wood Decomposition Is Mainly Mediated by Fungal Community Shifts at "Home―Versus "Away― Microbial Ecology, 2019, 78, 725-736.	2.8	24
30	First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs. FEMS Microbiology Ecology, 2015, 91, .	2.7	23
31	The Lycoperdales. A Molecular Approach to the Systematics of Some Gasteroid Mushrooms. Mycologia, 2001, 93, 947.	1.9	21
32	Molecular phylogenies and mating study data in Polyporus with special emphasis on group "Melanopus―(Basidiomycota). Mycological Progress, 2006, 5, 185-206.	1.4	18
33	Diversity and Interactions of Wood-Inhabiting Fungi and Beetles after Deadwood Enrichment. PLoS ONE, 2015, 10, e0143566.	2.5	18
34	Influence of Commonly Used Primer Systems on Automated Ribosomal Intergenic Spacer Analysis of Bacterial Communities in Environmental Samples. PLoS ONE, 2015, 10, e0118967.	2.5	18
35	Diversity Measures in Environmental Sequences Are Highly Dependent on Alignment Quality—Data from ITS and New LSU Primers Targeting Basidiomycetes. PLoS ONE, 2012, 7, e32139.	2.5	15
36	Application of nextâ€generation sequencing technologies to conservation of woodâ€inhabiting fungi. Conservation Biology, 2019, 33, 716-724.	4.7	13

Dirk Krüger

#	Article	IF	CITATIONS
37	A better understanding of functional roles of fungi in the decomposition process: using precursor rRNA containing ITS regions as a marker for the active fungal community. Annals of Forest Science, 2012, 69, 659-662.	2.0	12
38	The tropical Polyporus tricholoma (Polyporaceae) — Taxonomy, phylogeny, and the development of methods to detect cryptic species. Mycological Progress, 2004, 3, 65-79.	1.4	9
39	New measures of topological stability in phylogenetic trees – Taking taxon composition into account. Bioinformation, 2006, 1, 327-330.	0.5	9
40	Assessing the Mycorrhizal Diversity of Soils and Identification of Fungus Fruiting Bodies and Axenic Cultures. Soil Biology, 2009, , 159-188.	0.8	1