Mariusz Kepczynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhythmic neuronal activities of the rat nucleus of the solitary tract are impaired by highâ€fat diet – implications for daily control of satiety. Journal of Physiology, 2022, 600, 751-767.	2.9	13
2	Prominent hypertrophy of perivascular adipocytes due to short-term high fat diet. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166315.	3.8	10
3	Effect of polycation nanostructures on cell membrane permeability and toxicity. Environmental Science: Nano, 2022, 9, 702-713.	4.3	11
4	Effect of sodium hypochlorite, isopropyl alcohol and chlorhexidine on the epoxy sealant penetration into the dentinal tubules. Advances in Clinical and Experimental Medicine, 2022, 31, 121-127.	1.4	2
5	Rac1 regulates lipid droplets formation, nanomechanical, and nanostructural changes induced by TNF in vascular endothelium in the isolated murine aorta. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	5
6	Circadian actions of orexins on the retinorecipient lateral geniculate complex in rat. Journal of Physiology, 2021, 599, 231-252.	2.9	16
7	Encapsulation of Curcumin in Polystyrene-Based Nanoparticles—Drug Loading Capacity and Cytotoxicity. ACS Omega, 2021, 6, 12168-12178.	3.5	18
8	The impact of irrigation protocols on epoxy sealer penetration depth in dentinal tubules. Study involving laser confocal microscopy. Australian Endodontic Journal, 2021, , .	1.5	0
9	Daily coordination of orexinergic gating in the rat superior colliculus—Implications for intrinsic clock activities in the visual system. FASEB Journal, 2021, 35, e21930.	0.5	7
10	Polycation–Anionic Lipid Membrane Interactions. Langmuir, 2020, 36, 12435-12450.	3.5	27
11	Drug-loading capacity of polylactide-based micro- and nanoparticles – Experimental and molecular modeling study. International Journal of Pharmaceutics, 2020, 591, 120031.	5.2	13
12	Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor. ACS Chemical Neuroscience, 2020, 11, 1914-1924.	3.5	21
13	Cholesterol Reduces Partitioning of Antifungal Drug Itraconazole into Lipid Bilayers. Journal of Physical Chemistry B, 2020, 124, 2139-2148.	2.6	12
14	Formation of Strong Polycation (Poly[(3-allylamino-2-hydroxypropyl)trimethylammonium chloride]) Monolayers on Mica, Silica, and Gold Substrates: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2019, 123, 19022-19032.	3.1	5
15	Dexamethasone-containing bioactive dressing for possible application in post-operative keloid therapy. Cellulose, 2019, 26, 1895-1908.	4.9	8
16	Behavior of the DPH fluorescence probe in membranes perturbed by drugs. Chemistry and Physics of Lipids, 2019, 223, 104784.	3.2	47
17	Complex Behavior of Phosphatidylcholine–Phosphatidic Acid Bilayers and Monolayers: Effect of Acyl Chain Unsaturation. Langmuir, 2019, 35, 5944-5956	3.5	27
18	Orexin A depolarises rat intergeniculate leaflet neurons through nonâ€selective cation channels. European Journal of Neuroscience, 2019, 50, 2683-2693.	2.6	5

MARIUSZ KEPCZYNSKI

#	Article	IF	CITATIONS
19	Molecular Mechanism of Polycation-Induced Pore Formation in Biomembranes. ACS Biomaterials Science and Engineering, 2019, 5, 780-794.	5.2	27
20	Design and characterization of silicone micromaterials: A systematic study. Materials and Design, 2018, 146, 57-68.	7.0	12
21	lodinated zinc phthalocyanine – The novel visible-light activated photosensitizer for efficient generation of singlet oxygen. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 265-273.	3.9	9
22	Molecular Insight into Drug-Loading Capacity of PEG–PLGA Nanoparticles for Itraconazole. Journal of Physical Chemistry B, 2018, 122, 7080-7090.	2.6	60
23	Label-Free Infrared Spectroscopy and Imaging of Single Phospholipid Bilayers with Nanoscale Resolution. Analytical Chemistry, 2018, 90, 10179-10186.	6.5	27
24	Disinhibition of the intergeniculate leaflet network in the WAG/Rij rat model of absence epilepsy. Experimental Neurology, 2017, 289, 103-116.	4.1	9
25	Effect of piroxicam on lipid membranes: Drug encapsulation and gastric toxicity aspects. European Journal of Pharmaceutical Sciences, 2017, 100, 116-125.	4.0	16
26	Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications. Molecular Pharmaceutics, 2017, 14, 1057-1070.	4.6	19
27	Multiple excitatory actions of orexins upon thalamo-cortical neurons in dorsal lateral geniculate nucleus - implications for vision modulation by arousal. Scientific Reports, 2017, 7, 7713.	3.3	22
28	Polyion complex vesicles (PICsomes) from strong copolyelectrolytes. Stability and in vitro studies. Colloids and Surfaces B: Biointerfaces, 2017, 158, 658-666.	5.0	13
29	Effect of Polycation Structure on Interaction with Lipid Membranes. Journal of Physical Chemistry B, 2017, 121, 7318-7326.	2.6	27
30	Polymersome-to-coacervate transformations. European Polymer Journal, 2017, 94, 125-135.	5.4	8
31	Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives. Colloids and Surfaces B: Biointerfaces, 2017, 150, 402-407.	5.0	32
32	Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes. Langmuir, 2016, 32, 5004-5018.	3.5	37
33	Functionalized lipids and surfactants for specific applications. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2362-2379.	2.6	19
34	Growth and motility of human skin fibroblasts on multilayer strong polyelectrolyte films. Journal of Colloid and Interface Science, 2016, 461, 305-316.	9.4	12
35	PEGylated Liposomes as Carriers of Hydrophobic Porphyrins. Journal of Physical Chemistry B, 2015, 119, 6646-6657.	2.6	47
36	Stable polymersomes based on ionic–zwitterionic block copolymers modified with superparamagnetic iron oxide nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2015, 3, 5523-5531.	5.8	22

MARIUSZ KEPCZYNSKI

#	Article	IF	CITATIONS
37	Effect of Phosphatidic Acid on Biomembrane: Experimental and Molecular Dynamics Simulations Study. Journal of Physical Chemistry B, 2015, 119, 10042-10051.	2.6	20
38	Fluorescent 1,2,3-triazole derivative of 3′-deoxy-3-azidothymidine: synthesis and absorption/emission spectra. Heterocyclic Communications, 2015, 21, 263-267.	1.2	7
39	Gene delivery efficiency and intracellular trafficking of novel poly(allylamine) derivatives. International Journal of Pharmaceutics, 2015, 478, 372-382.	5.2	24
40	Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Mikrochimica Acta, 2015, 182, 119-127.	5.0	49
41	Synthesis, spectroscopic properties and interaction with a liposomal membrane of a novel iodinated magnesium phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286, 55-63.	3.9	22
42	Synthesis of strong polycations with improved biological properties. Journal of Biomedical Materials Research - Part A, 2014, 102, 721-731.	4.0	26
43	Effect of PEGylation on Drug Entry into Lipid Bilayer. Journal of Physical Chemistry B, 2014, 118, 144-151.	2.6	26
44	Porphyrin–Nanoclay Photosensitizers for Visible Light Induced Oxidation of Phenol in Aqueous Media. Journal of Physical Chemistry C, 2014, 118, 9196-9202.	3.1	11
45	Interactions of serum with polyelectrolyte-stabilized liposomes: Cryo-TEM studies. Colloids and Surfaces B: Biointerfaces, 2014, 120, 152-159.	5.0	23
46	Endothelium in Spots – High-Content Imaging of Lipid Rafts Clusters in db/db Mice. PLoS ONE, 2014, 9, e106065.	2.5	33
47	Nanostructural Hybrid Sensitizers for Photodynamic Therapy. Current Pharmaceutical Design, 2012, 18, 2607-2621.	1.9	22
48	Study of Interaction Between PEG Carrier and Three Relevant Drug Molecules: Piroxicam, Paclitaxel, and Hematoporphyrin. Journal of Physical Chemistry B, 2012, 116, 7334-7341.	2.6	51
49	Sol–gel synthesis of iron oxide–silica composite microstructures. Journal of Sol-Gel Science and Technology, 2012, 64, 67-77.	2.4	18
50	Interactions of a Hydrophobically Modified Polycation with Zwitterionic Lipid Membranes. Langmuir, 2012, 28, 676-688.	3.5	42
51	Interaction of Hematoporphyrin with Lipid Membranes. Journal of Physical Chemistry B, 2012, 116, 4889-4897.	2.6	36
52	Silicone Nano/Microstructures Obtained in Ionic Polymerization. Macromolecular Symposia, 2011, 308, 43-48.	0.7	1
53	Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids and Surfaces B: Biointerfaces, 2011, 88, 231-239.	5.0	116
54	Silica covered porphyrin microstructures obtained in sol–gel processes. Journal of Sol-Gel Science and Technology, 2011, 59, 276-282.	2.4	1

#	Article	IF	CITATIONS
55	Bilayer structures in dioctadecyldimethylammonium bromide/oleic acid dispersions. Chemistry and Physics of Lipids, 2011, 164, 359-367.	3.2	22
56	Silicone-stabilized liposomes. Colloid and Polymer Science, 2010, 288, 37-45.	2.1	20
57	Spontaneous Formation of Densely Stacked Multilamellar Vesicles in Dioctadecyldimethylammonium Bromide/Oleosiloxane Mixtures. Langmuir, 2010, 26, 1551-1556.	3.5	18
58	Behavior of 2,6-Bis(decyloxy)naphthalene Inside Lipid Bilayer. Journal of Physical Chemistry B, 2010, 114, 15483-15494.	2.6	11
59	Molecular Structure of the Dioctadecyldimethylammonium Bromide (DODAB) Bilayer. Langmuir, 2010, 26, 15076-15079.	3.5	32
60	Hybrid Silica-Silicone Nanocapsules Obtained in Catanionic Vesicles. Cryo-TEM Studies. Journal of Nanoscience and Nanotechnology, 2009, 9, 3138-3143.	0.9	15
61	Comparison of photodynamic efficacy of tetraarylporphyrin pegylated or encapsulated in liposomes: In vitro studies. Journal of Photochemistry and Photobiology B: Biology, 2009, 97, 8-17.	3.8	36
62	Novel Nanostructural Hybride Materials for Photodynamic Theraphy. Macromolecular Symposia, 2009, 279, 132-137.	0.7	6
63	Which physical and structural factors of liposome carriers control their drug-loading efficiency?. Chemistry and Physics of Lipids, 2008, 155, 7-15.	3.2	53
64	Properties of Polyethylene Glycol Supported Tetraarylporphyrin in Aqueous Solution and Its Interaction with Liposomal Membranes. Journal of Physical Chemistry B, 2008, 112, 12231-12239.	2.6	29
65	Silicone Nanocapsules Templated Inside the Membranes of Catanionic Vesicles. Langmuir, 2007, 23, 7314-7320.	3.5	35
66	Do Liposome-binding Constants of Porphyrins Correlate with Their Measured and Predicted Partitioning Between Octanol and Water?¶. Photochemistry and Photobiology, 2007, 76, 127-134.	2.5	5
67	Interaction of Dicarboxylic Metalloporphyrins with Liposomes. The Effect of pH on Membrane Binding Revisited¶. Photochemistry and Photobiology, 2007, 76, 486-492.	2.5	1
68	Pegylated tetraarylporphyrin entrapped in liposomal membranes. Colloids and Surfaces B: Biointerfaces, 2006, 49, 22-30.	5.0	42
69	Interactions of Porphyrin Covalently Attached to Poly(methacrylic acid) with Liposomal Membranes. Journal of Physical Chemistry B, 2005, 109, 1289-1294.	2.6	14
70	Interaction of Dicarboxylic Metalloporphyrins with Liposomes. The Effect of pH on Membrane Binding Revisited¶. Photochemistry and Photobiology, 2002, 76, 486.	2.5	31
71	Do Liposome-binding Constants of Porphyrins Correlate with Their Measured and Predicted Partitioning Between Octanol and Water?¶. Photochemistry and Photobiology, 2002, 76, 127. 	2.5	102
72	New polymeric photosensitizers. Pure and Applied Chemistry, 2001, 73, 491-495.	1.9	38

#	Article	IF	CITATIONS
73	Polymeric Photosensitizers, 5. Synthesis and Photochemical Properties of Poly[(N-isopropylacrylamide)-co-(vinylbenzyl chloride)] Containing Covalently Bound Rose Bengal Chromophores. Macromolecular Chemistry and Physics, 2001, 202, 1679-1688.	2.2	23
74	Polymeric photosensitizers 2. Photosensitized oxidation of phenol in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 251-256.	3.9	50
75	Polymeric photosensitizers, 1. Synthesis and photochemical properties of poly[(sodium) Tj ETQq1 1 0.784314 rg Macromolecular Chemistry and Physics, 1995, 196, 2073-2080.	BT /Overlo 2.2	ock 10 Tf 50 20