List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891083/publications.pdf Version: 2024-02-01

		147801	182427
130	3,439	31	51
papers	citations	h-index	g-index
131	131	131	3476
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chocolate flow behavior: Composition and process effects. Critical Reviews in Food Science and Nutrition, 2023, 63, 3788-3802.	10.3	10
2	A new trend among plant-based food ingredients in food processing technology: Aquafaba. Critical Reviews in Food Science and Nutrition, 2023, 63, 4467-4484.	10.3	16
3	Gummy candies production with natural sugar source: Effect of molasses types and gelatin ratios. Food Science and Technology International, 2022, 28, 118-127.	2.2	14
4	Formulating and studying compound chocolate with adding dried grape pomace as a bulking agent. Journal of Food Science and Technology, 2022, 59, 1704-1714.	2.8	4
5	Large amplitude oscillatory shear (LAOS) measurements as a promising tool to predict electrospinnability of pectin solutions. Journal of Applied Polymer Science, 2022, 139, 51652.	2.6	2
6	Evaluation of kashar cheese meltability by tack and large amplitude oscillatory shear (LAOS) tests. International Dairy Journal, 2022, 127, 105242.	3.0	8
7	Using spray-dried and encapsulated Nannochloropsis oculata biomasses in white spread. Journal of Applied Phycology, 2022, 34, 375-383.	2.8	3
8	Some physicochemical and technological properties of cooking water of pulses as a canned industry waste: effect of ultrasound treatment during soaking. International Journal of Food Engineering, 2022, 18, 105-118.	1.5	2
9	Investigation of process parameters and albumin concentration as foaming agent on quality of marshmallow dough: production simulation with rheometer. Rheologica Acta, 2022, 61, 339-351.	2.4	2
10	Investigation of using possibility of grape pomace in wafer sheet for wheat flour substitution. International Journal of Food Science and Technology, 2022, 57, 3634-3642.	2.7	5
11	Development of a novel rheological method for determining melting properties of gelatin-based gummies. International Journal of Biological Macromolecules, 2022, 209, 385-395.	7.5	3
12	Utilising grape juice processing byâ€products as bulking and colouring agent in white chocolate. International Journal of Food Science and Technology, 2022, 57, 4119-4128.	2.7	6
13	Health conscious consumers and sugar confectionery: Present aspects and projections. Trends in Food Science and Technology, 2022, 123, 57-68.	15.1	20
14	Soft confectionery products: Quality parameters, interactions with processing and ingredients. Food Chemistry, 2022, 385, 132735.	8.2	18
15	Largeâ€amplitude oscillatory shear behavior of xanthan gum/locust bean gum mixture: Effect of preparation methods on synergistic interaction. Journal of Food Process Engineering, 2022, 45, .	2.9	2
16	Buttermilk as milk powder and whey substitute in compound milk chocolate: Comparative study and optimisation. International Journal of Dairy Technology, 2021, 74, 246-257.	2.8	8
17	Valorization of hazelnut cake in compound chocolate: The effect of formulation on rheological and physical properties. LWT - Food Science and Technology, 2021, 139, 110609.	5.2	11
18	Effect of grape pomace usage in chocolate spread formulation on textural, rheological and digestibility properties. LWT - Food Science and Technology, 2021, 138, 110451.	5.2	34

#	Article	IF	CITATIONS
19	The effect of taro-wheat flour and taro-gluten free flour on cake batters and quality. Journal of Food Measurement and Characterization, 2021, 15, 531-540.	3.2	1
20	Carob powder as cocoa substitute in milk and dark compound chocolate formulation. Journal of Food Science and Technology, 2021, 58, 4558-4566.	2.8	11
21	Caramelized white chocolate: effects of production process on quality parameters. Journal of Food Measurement and Characterization, 2021, 15, 3182-3194.	3.2	3
22	Effects of apple pomace as a sucrose substitute on the quality characteristics of compound chocolate and spread. Journal of Food Processing and Preservation, 2021, 45, e15773.	2.0	3
23	Physicochemical properties of chocolate spread with hazelnut cake: Comparative study and optimization. LWT - Food Science and Technology, 2021, 147, 111548.	5.2	11
24	Investigation effects of inulin degree of polymerization on compound chocolate quality. Journal of Food Processing and Preservation, 2021, 45, e15766.	2.0	3
25	Using sprayâ€dried sugar beet molasses in ice cream as a novel bulking agent. International Journal of Food Science and Technology, 2020, 55, 1298-1310.	2.7	8
26	Valorisation of grape by-products as a bulking agent in soft candies: Effect of particle size. LWT - Food Science and Technology, 2020, 118, 108776.	5.2	34
27	Using encapsulated Nannochloropsis oculata in white chocolate as coloring agent. Journal of Applied Phycology, 2020, 32, 3077-3088.	2.8	21
28	A fundamental optimization study on chewing gum textural and sensorial properties: The effect of ingredients. Food Structure, 2020, 26, 100155.	4.5	10
29	Effect of process conditions and amylose/amylopectin ratio on the pasting behavior of maize starch: A modeling approach. Journal of Cereal Science, 2020, 94, 102998.	3.7	39
30	Investigating the effects of Lecithin-PGPR mixture on physical properties of milk chocolate. LWT - Food Science and Technology, 2020, 129, 109548.	5.2	21
31	Taro flour usage in wheat flour bread and glutenâ€free bread: Evaluation of rheological, technological and some nutritional properties. Journal of Food Process Engineering, 2020, 43, e13454.	2.9	10
32	Usage possibility of mannitol and soluble wheat fiber in low calorie gummy candies. LWT - Food Science and Technology, 2020, 128, 109531.	5.2	23
33	Chocolate aroma: Factors, importance and analysis. Trends in Food Science and Technology, 2020, 99, 580-592.	15.1	29
34	Determining Honey Adulteration by Seeding Method: an Initial Study with Sunflower Honey. Food Analytical Methods, 2020, 13, 952-961.	2.6	4
35	Rapid determination of emulsion stability by rheology-based thermal loop test. LWT - Food Science and Technology, 2020, 122, 109037.	5.2	23
36	Pre-crystallization process in chocolate: Mechanism, importance and novel aspects. Food Chemistry, 2020, 321, 126718.	8.2	23

#	Article	IF	CITATIONS
37	Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 2020, 47, 101811.	4.6	55
38	Effect of Various Bulk Sweeteners on the Survivability of Lactobacillus casei 431 in Milk Chocolate: Rheological and Sensory Properties Analysis. Current Pharmaceutical Biotechnology, 2020, 21, 1224-1231.	1.6	3
39	Chocolate quality and conching. Trends in Food Science and Technology, 2019, 91, 446-453.	15.1	32
40	The effect of invertase concentration on quality parameters of fondant. Journal of Food Science and Technology, 2019, 56, 4242-4250.	2.8	3
41	Alternative Tempering of Sugar-Free Dark Chocolates by β _v Seeding: Sensorial, Micro-Structural and Some Physical Properties and Volatile Profile. International Journal of Food Engineering, 2019, 15, .	1.5	7
42	Application of simplex lattice mixture design for optimization of sucrose-free milk chocolate produced in a ball mill. LWT - Food Science and Technology, 2019, 115, 108435.	5.2	26
43	Incorporation of defatted apple seeds in chewing gum system and phloridzin dissolution kinetics. Journal of Food Engineering, 2019, 255, 9-14.	5.2	39
44	A Novel Delivering Agent for Bioactive Compounds: Chewing Gum. Reference Series in Phytochemistry, 2019, , 1559-1596.	0.4	1
45	Effects of polyols on the quality characteristics of sucrose-free milk chocolate produced in a ball mill. RSC Advances, 2019, 9, 29676-29688.	3.6	22
46	Porphyridum Cruentum as a natural colorant in chewing gum. Food Science and Technology, 2019, 39, 195-201.	1.7	8
47	Conventional and sugar-free probiotic white chocolate: Effect of inulin DP on various quality properties and viability of probiotics. Journal of Functional Foods, 2018, 43, 206-213.	3.4	61
48	Investigating the usage of unsaturated fatty acid-rich and low-calorie oleogels as a shortening mimetics in cake. Journal of Food Processing and Preservation, 2018, 42, e13621.	2.0	54
49	Formulation of dark chocolate as a carrier to deliver eicosapentaenoic and docosahexaenoic acids: Effects on product quality. Food Chemistry, 2018, 254, 224-231.	8.2	29
50	Enrichment of Milk Chocolate by Using EPA and DHA Originated from Various Origins: Effects on Product Quality. Sugar Tech, 2018, 20, 745-755.	1.8	17
51	Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 2018, 58, 1330-1341.	10.3	176
52	Using spray-dried microalgae as a natural coloring agent in chewing gum: effects on color, sensory, and textural properties. Journal of Applied Phycology, 2018, 30, 1031-1039.	2.8	27
53	Bioactive and bioaccessibility characteristics of honeybee pollens collected from different regions of Turkey. Journal of Food Measurement and Characterization, 2018, 12, 581-587.	3.2	14
54	Development of a Natural Chewing Gum from Plant Based Polymer. Journal of Polymers and the Environment, 2018, 26, 1969-1978.	5.0	7

#	Article	IF	CITATIONS
55	Developing functional white chocolate by incorporating different forms of EPA and DHA - Effects on product quality. LWT - Food Science and Technology, 2018, 87, 177-185.	5.2	29
56	A Novel Delivering Agent for Bioactive Compounds: Chewing Gum. Reference Series in Phytochemistry, 2018, , 1-39.	0.4	0
57	Phenolics release kinetics in sugared and sugarâ€free chewing gums: microencapsulated pomegranate peel extract usage. International Journal of Food Science and Technology, 2018, 53, 2657-2663.	2.7	18
58	Modeling of Bioactive Compound Content of Different Tea Bags: Effect of Steeping Temperature and Time. Journal of Food Processing and Preservation, 2017, 41, e12773.	2.0	5
59	A modeling approach in the interpretation of starch pasting properties. Journal of Cereal Science, 2017, 74, 272-278.	3.7	32
60	Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. International Journal of Biological Macromolecules, 2017, 102, 1035-1044.	7.5	72
61	Investigating the effect of production process of ball mill refiner on some physical quality parameters of compound chocolate: response surface methodology approach. International Journal of Food Science and Technology, 2017, 52, 788-799.	2.7	18
62	Effect of Inulin DP on Various Properties of Sugar-Free Dark Chocolates Containing Lactobacillus paracasei and Lactobacillus acidophilus. International Journal of Food Engineering, 2017, 13, .	1.5	12
63	Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control, 2017, 82, 212-216.	5.5	103
64	Stability of lactic acid bacteria in synbiotic sugared and sugar-free milk chocolates. International Journal of Food Properties, 2017, , 1-12.	3.0	1
65	Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. Journal of Food Measurement and Characterization, 2017, 11, 50-57.	3.2	23
66	Characterization of Grape Molasses/Sesame Paste/Honey Blends: Multiple Response Optimization of Some Physicochemical, Bioactive, Viscoelastic and Sensory Properties. Journal of Food Process Engineering, 2017, 40, e12406.	2.9	7
67	Investigation of rheological synergistic interactions between hydrocolloids and starch in milky cacao beverages model: principal component analyses. European Food Research and Technology, 2017, 243, 1031-1039.	3.3	1
68	Rheological properties of wax oleogels rich in high oleic acid. International Journal of Food Properties, 2017, 20, S2856-S2867.	3.0	16
69	Rapid tempering of sucrose-free milk chocolates by β V seeding: textural, rheological and melting properties. European Food Research and Technology, 2017, 243, 1849-1860.	3.3	11
70	Pasting properties of buckwheat, rice and maize flours and textural properties of their gels: effect of ascorbic acid concentration. Quality Assurance and Safety of Crops and Foods, 2017, 9, 313-321.	3.4	4
71	Chewing gum: Production, quality parameters and opportunities for delivering bioactive compounds. Trends in Food Science and Technology, 2016, 55, 29-38.	15.1	50
72	Rheological characteristics of Salvia sclarea seed gum solutions at different hydration temperature levels: Application of three interval thixotropy test (3ITT). LWT - Food Science and Technology, 2016, 71, 391-399.	5.2	13

#	Article	IF	CITATIONS
73	Tulip petal as a novel natural food colorant source: Extraction optimization and stability studies. Industrial Crops and Products, 2016, 91, 215-222.	5.2	19
74	Ultrasonic Applications for Food Dehydration. , 2016, , 1247-1270.		4
75	Changes in the texture, physicochemical properties and volatile compound profiles of fresh <scp>K</scp> ashar cheese (<90Âdays) during ripening. International Journal of Dairy Technology, 2016, 69, 243-253.	2.8	21
76	Stress relaxation/creep compliance behaviour of kashar cheese: Scanning electron microscopy observations. International Journal of Dairy Technology, 2016, 69, 254-261.	2.8	15
77	Physicochemical and nutritional properties of taro (Colocasia esculenta L. Schott) flour as affected by drying temperature and air velocity. LWT - Food Science and Technology, 2016, 74, 434-440.	5.2	31
78	Effect of apple fibre on textural and relaxation properties of wheat chips dough. Quality Assurance and Safety of Crops and Foods, 2016, 8, 457-472.	3.4	2
79	Effects of in situ exopolysaccharide production and fermentation conditions on physicochemical, microbiological, textural and microstructural properties of Turkish-type fermented sausage (sucuk). Meat Science, 2016, 121, 156-165.	5.5	39
80	Investigating the addition of enzymes in gluten-free flours – The effect on pasting and textural properties. LWT - Food Science and Technology, 2016, 69, 633-641.	5.2	26
81	The influence of particle size on some physicochemical, rheological and melting properties and volatile compound profile of compound chocolate and cocolin samples. European Food Research and Technology, 2016, 242, 1253-1266.	3.3	20
82	Improving functionality of chocolate: A review on probiotic, prebiotic, and/or synbiotic characteristics. Trends in Food Science and Technology, 2016, 49, 35-44.	15.1	68
83	Combined design as a useful statistical approach to extract maximum amount of phenolic compounds from virgin olive oil waste. LWT - Food Science and Technology, 2016, 70, 24-32.	5.2	7
84	Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization. Carbohydrate Polymers, 2016, 136, 427-440.	10.2	57
85	Effect of vaporized ethyl pyruvate as a novel preservation agent for control of postharvest quality and fungal damage of strawberry and cherry fruits. LWT - Food Science and Technology, 2016, 65, 1044-1049.	5.2	22
86	An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chemistry, 2016, 190, 1109-1115.	8.2	162
87	Steady, dynamic, creep/recovery, and textural properties of yoghurt/molasses blends: Temperature sweep tests and applicability of Cox–Merz rule. Food Science and Technology International, 2016, 22, 31-46.	2.2	14
88	Ultrasonic Applications for Food Dehydration. , 2016, , 1-24.		0
89	Change in major fatty acid composition of vegetable oil depending on phenolic incorporation and storage period. Quality Assurance and Safety of Crops and Foods, 2016, 8, 179-188.	3.4	3
90	Hydroxymethylfurfural content and physicochemical properties of the caramel samples enriched with different dietary fibres. Quality Assurance and Safety of Crops and Foods, 2015, 7, 277-285.	3.4	4

#	Article	IF	CITATIONS
91	Pasting, Textural and Sensory Characteristics of the Kofter, A Fruit-Based Dessert: Effect of Molasses and Water Concentration. International Journal of Food Engineering, 2015, 11, 349-358.	1.5	5
92	Investigation of fatty acid composition and trans fatty acid formation in extracted oils from French-fried potatoes and classification of samples using chemometric approaches. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 80-90.	2.1	3
93	Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: An optimization study based on fermentation kinetics. Journal of Dairy Science, 2015, 98, 1604-1624.	3.4	66
94	Recovery Potential of Cold Press Byproducts Obtained from the Edible Oil Industry: Physicochemical, Bioactive, and Antimicrobial Properties. Journal of Agricultural and Food Chemistry, 2015, 63, 2305-2313.	5.2	67
95	A mixture design study to determine interaction effects of wheat, buckwheat, and rice flours in an aqueous model system. LWT - Food Science and Technology, 2015, 61, 583-589.	5.2	25
96	Three interval thixotropy test (3ITT) in food applications: A novel technique to determine structural regeneration of mayonnaise under different shear conditions. Food Research International, 2015, 70, 125-133.	6.2	86
97	Classification of Kashar Cheeses Based on Their Chemical, Color and Instrumental Textural Characteristics Using Principal Component and Hierarchical Cluster Analysis. International Journal of Food Properties, 2015, 18, 909-921.	3.0	23
98	Minimising the environmental footprint of industrial-scaled cleaning processes by optimisation of a novel clean-in-place system protocol. Journal of Cleaner Production, 2015, 108, 1009-1018.	9.3	28
99	Combination of the Simple Additive (SAW) Approach and Mixture Design to Determine Optimum Cocoa Combination of the Hot Chocolate Beverage. International Journal of Food Properties, 2015, 18, 1677-1692.	3.0	14
100	Bioactive and rheological properties of rose hip marmalade. Journal of Food Science and Technology, 2015, 52, 6465-6474.	2.8	17
101	Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. Journal of Food Engineering, 2015, 150, 90-98.	5.2	33
102	Ultrasonic Applications for Food Dehydration. , 2015, , 1-24.		1
103	Microbiological, steady, and dynamic rheological characterization of boza samples: temperature sweep tests and applicability of the Cox–Merz rule. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2014, 38, 377-387.	2.1	14
104	A response surface methodology study on the effects of some phenolics and storage period length on vegetable oil quality: change in oxidation stability parameters. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2014, 38, 759-772.	2.1	7
105	Modeling of rheological properties of mellorine mix including different oil and gum types by combined design, ANN, and ANFIS models. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2014, 38, 745-757.	2.1	4
106	Effect of yoghurt or yoghurt serum on microbial quality of cig kofte. Journal of Food Science and Technology, 2014, 51, 1406-1410.	2.8	4
107	Optimization of gum combination for instant pudding based on creep and recovery parameters by mixture design approach. European Food Research and Technology, 2014, 238, 47-58.	3.3	18
108	Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Research International, 2014, 64, 634-646.	6.2	64

#	Article	IF	CITATIONS
109	Ultrasonic vacuum drying technique as a novel process for shortening the drying period for beef and chicken meats. Innovative Food Science and Emerging Technologies, 2014, 26, 182-190.	5.6	97
110	Bioactive and Physicochemical Properties of Persimmon as Affected by Drying Methods. Drying Technology, 2014, 32, 258-267.	3.1	71
111	Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. Journal of Dairy Science, 2014, 97, 97-110.	3.4	107
112	Physicochemical, functional and sensory properties of mellorine enriched with different vegetable juices and TOPSIS approach to determine optimum juice concentration. Food Bioscience, 2014, 7, 45-55.	4.4	20
113	Effect of temperature and starch concentration on the creep/recovery behaviour of the grape molasses: modelling with ANN, ANFIS and response surface methodology. European Food Research and Technology, 2013, 236, 1049-1061.	3.3	12
114	Steady, Dynamic, Creep, and Recovery Analysis of Ice Cream Mixes Added with Different Concentrations of Xanthan Gum. Food and Bioprocess Technology, 2013, 6, 1420-1433.	4.7	71
115	Temperature Dependency of Steady, Dynamic, and Creep-Recovery Rheological Properties of Ice Cream Mix. Food and Bioprocess Technology, 2013, 6, 2974-2985.	4.7	54
116	Application of Different Multi-criteria Decision Techniques to Determine Optimum Flavour of Prebiotic Pudding Based on Sensory Analyses. Food and Bioprocess Technology, 2013, 6, 2844-2859.	4.7	33
117	The Effects of Different Gums and Their Interactions on the Rheological Properties of a Dairy Dessert: A Mixture Design Approach. Food and Bioprocess Technology, 2013, 6, 896-908.	4.7	53
118	Optimization of Gum Combination in Prebiotic Instant Hot Chocolate Beverage Model System in Terms of Rheological Aspect: Mixture Design Approach. Food and Bioprocess Technology, 2013, 6, 783-794.	4.7	30
119	Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Industrial Crops and Products, 2013, 50, 137-144.	5.2	52
120	Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 2013, 46, 124-131.	5.2	139
121	Pasting properties, texture profile and stress–relaxation behavior of wheat starch/dietary fiber systems. Food Research International, 2013, 53, 278-290.	6.2	78
122	The Effect of Starch Concentration and Temperature on Grape Molasses: Rheological and Textural Properties. Food and Bioprocess Technology, 2013, 6, 259-271.	4.7	41
123	5-hydroxymethyl furfural formation and reaction kinetics of different pekmez samples: effect of temperature and storage. International Journal of Food Engineering, 2012, 8, .	1.5	9
124	Effect of Oil Type and Fatty Acid Composition on Dynamic and Steady Shear Rheology of Vegetable Oils. Journal of Oleo Science, 2012, 61, 181-187.	1.4	60
125	"Optimization of Edible Oil Extraction from Ofada Rice Bran Using Response Surface Methodology―by Akinoso, R. & Adeyanju, J.A. [Food and Bioprocess Technology 5 (2012) 1372–1378]. Food and Bioprocess Technology, 2012, 5, 2630-2631.	4.7	1
126	Prediction of fatty acid composition of vegetable oils based on rheological measurements using nonlinear models. European Journal of Lipid Science and Technology, 2012, 114, 1217-1224.	1.5	32

#	Article	IF	CITATIONS
127	Rheological Behaviour of Instant Hot Chocolate Beverage: Part 1. Optimization of the Effect of Different Starches and Gums. Food Biophysics, 2011, 6, 512-518.	3.0	35
128	Rheological and melting properties of sucrose-free dark chocolate. International Journal of Food Properties, 0, , 1-11.	3.0	8
129	High potential food wastes: Evaluation of melon seeds as spreadable butter. Journal of Food Processing and Preservation, 0, , .	2.0	1
130	The Effect of Soapwort Extract as an Alternative to Albumin on the Physical, Textural, Sensory and Rheological Properties of Marshmallow. Journal of Food Processing and Preservation, 0, , .	2.0	1