Seung-Chul Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/589080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbiota-mediated skewing of tryptophan catabolism modulates CD4+ TÂcells in lupus-prone mice. IScience, 2022, 25, 104241.	4.1	18
2	Pharmacologically Inferred Glycolysis and Glutaminolysis Requirement of B Cells in Lupus-Prone Mice. Journal of Immunology, 2022, 208, 2098-2108.	0.8	9
3	Metabolic regulation of follicular helper T cell differentiation in a mouse model of lupus. Immunology Letters, 2022, 247, 13-21.	2.5	4
4	Lupus susceptibility gene Esrrg modulates regulatory T cells through mitochondrial metabolism. JCI Insight, 2021, 6, .	5.0	11
5	Metabolic determinants of lupus pathogenesis. Immunological Reviews, 2020, 295, 167-186.	6.0	30
6	Immune metabolism regulation of the germinal center response. Experimental and Molecular Medicine, 2020, 52, 348-355.	7.7	29
7	Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Science Translational Medicine, 2020, 12, .	12.4	127
8	T cells expressing the lupus susceptibility allele Pbx1d enhance autoimmunity and atherosclerosis in dyslipidemic mice. JCI Insight, 2020, 5, .	5.0	16
9	Efficacy of the Combination of Metformin and CTLA4lg in the (NZB × NZW)F1 Mouse Model of Lupus Nephritis. ImmunoHorizons, 2020, 4, 319-331.	1.8	14
10	Targeting T Cell Activation and Lupus Autoimmune Phenotypes by Inhibiting Glucose Transporters. Frontiers in Immunology, 2019, 10, 833.	4.8	73
11	Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization. Journal of Immunology, 2018, 200, 3087-3099.	0.8	17
12	EF-03â€Microbiota-associated tryptophan catabolism induces autoimmune activation in a mouse model of lupus. , 2018, , .		0
13	Inhibition of Glycolysis Reduces Disease Severity in an Autoimmune Model of Rheumatoid Arthritis. Frontiers in Immunology, 2018, 9, 1973.	4.8	104
14	Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells. Nature Communications, 2018, 9, 4369.	12.8	94
15	The PBX1 lupus susceptibility gene regulates CD44 expression. Molecular Immunology, 2017, 85, 148-154.	2.2	13
16	B cell contribution of the CD4 ⁺ T cell inflammatory phenotypes in systemic lupus erythematosus. Autoimmunity, 2017, 50, 37-41.	2.6	18
17	Metabolic Factors that Contribute to Lupus Pathogenesis. Critical Reviews in Immunology, 2016, 36, 75-98.	0.5	29
18	Immune Cell Metabolism in Systemic Lupus Erythematosus. Current Rheumatology Reports, 2016, 18, 66.	4.7	30

SEUNG-CHUL CHOI

#	Article	IF	CITATIONS
19	The Lupus Susceptibility Gene <i>Pbx1</i> Regulates the Balance between Follicular Helper T Cell and Regulatory T Cell Differentiation. Journal of Immunology, 2016, 197, 458-469.	0.8	30
20	Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. Journal of Immunology, 2016, 196, 80-90.	0.8	132
21	Genetic and cellular dissection of the activation of AM14 rheumatoid factor B cells in a mouse model of lupus. Journal of Leukocyte Biology, 2015, 98, 209-221.	3.3	0
22	Normalization of CD4 ⁺ T cell metabolism reverses lupus. Science Translational Medicine, 2015, 7, 274ra18.	12.4	502
23	TLR7 Activation Accelerates Cardiovascular Pathology in a Mouse Model of Lupus. Frontiers in Immunology, 0, 13, .	4.8	6