Haijun Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5890713/haijun-wu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

124	9,274	50	95
papers	citations	h-index	g-index
130 ext. papers	11,512 ext. citations	14.1 avg, IF	6.27 L-index

#	Paper	IF	Citations
124	Nanotwins Strengthening High Thermoelectric Performance Bismuth Antimony Telluride Alloys <i>Advanced Science</i> , 2022 , e2200432	13.6	1
123	Evolution from Lead-Based to Lead-Free Piezoelectrics: Engineering of Lattices, Domains, Boundaries, and Defects Leading to Giant Response. <i>Advanced Materials</i> , 2021 , e2106845	24	9
122	Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics. <i>Advanced Science</i> , 2021 , 8, 2100220	13.6	14
121	Alkali-deficiency driven charged out-of-phase boundaries for giant electromechanical response. <i>Nature Communications</i> , 2021 , 12, 2841	17.4	4
120	Nanoscale bubble domains with polar topologies in bulk ferroelectrics. <i>Nature Communications</i> , 2021 , 12, 3632	17.4	10
119	Symmetry of the Underlying Lattice in (K,Na)NbO-Based Relaxor Ferroelectrics with Large Electromechanical Response. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 7461-7469	9.5	6
118	(GeTe)(AgSnSe): Strong Atomic Disorder-Induced High Thermoelectric Performance near the Ioffe-Regel Limit. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 47081-47089	9.5	7
117	Critical role of tellurium self-compensation in enhancing the thermoelectric performance of p-Type Bi0.4Sb1.6Te3 alloy. <i>Chemical Engineering Journal</i> , 2021 , 425, 130670	14.7	7
116	Constructing multi-type defects in In0.1Sb1.9Te3-(MgB2) composites: Simultaneously enhancing the thermoelectric and mechanical properties. <i>Nano Energy</i> , 2021 , 90, 106530	17.1	1
115	Synergistic Strategies to Boost Lead Telluride as Prospective Thermoelectrics 2021 , 155-189		1
114	Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. <i>Science China Materials</i> , 2020 , 63, 1759-1768	7.1	22
113	Ultrahigh Average Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5901-5909	16.4	51
112	Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM0.01Se. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5699-5708	13	12
111	Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in -Type PbS. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4051-4060	16.4	71
110	Nanoscale Phase Mixture and Multifield-Induced Topotactic Phase Transformation in SrFeO. <i>ACS Applied Materials & District Materials & </i>	9.5	6
109	Flexible Ferroelectrics: Periodic Wrinkle-Patterned Single-Crystalline Ferroelectric Oxide Membranes with Enhanced Piezoelectricity (Adv. Mater. 50/2020). <i>Advanced Materials</i> , 2020 , 32, 20703	37 7 4	
108	Bismuth ion battery IA new member in trivalent battery technology. <i>Energy Storage Materials</i> , 2020 , 25, 100-104	19.4	2

(2019-2020)

107	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. <i>Energy and Environmental Science</i> , 2020 , 13, 229-237	35.4	43
106	New Role of Relaxor Multiphase Coexistence in Potassium Sodium Niobate Ceramics: Reduced Electric Field Dependence of Strain Temperature Stability. <i>ACS Applied Materials & Description</i> (12, 49822-49829)	9.5	3
105	Giant piezoelectricity in oxide thin films with nanopillar structure. <i>Science</i> , 2020 , 369, 292-297	33.3	34
104	High-performance potassium sodium niobate piezoceramics for ultrasonic transducer. <i>Nano Energy</i> , 2020 , 70, 104559	17.1	37
103	Enhanced mechanical and thermoelectric properties enabled by hierarchical structure in medium-temperature Sb2Te3 based alloys. <i>Nano Energy</i> , 2020 , 78, 105228	17.1	13
102	Periodic Wrinkle-Patterned Single-Crystalline Ferroelectric Oxide Membranes with Enhanced Piezoelectricity. <i>Advanced Materials</i> , 2020 , 32, e2004477	24	18
101	Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. <i>Nature Communications</i> , 2020 , 11, 4647	17.4	29
100	Single-Atom Tungsten-Doped CoP Nanoarrays as a High-Efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14825-14832	8.3	32
99	Nanoscale Topotactic Phase Transformation in SrFeO Epitaxial Thin Films for High-Density Resistive Switching Memory. <i>Advanced Materials</i> , 2019 , 31, e1903679	24	27
98	Comprehensive Investigation on the Thermoelectric Properties of p-Type PbTe-PbSe-PbS Alloys. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900609	6.4	20
97	High thermoelectric performance in low-cost SnSSe crystals. <i>Science</i> , 2019 , 365, 1418-1424	33.3	233
96	Outstanding Piezoelectric Performance in Lead-Free 0.95(K,Na)(Sb,Nb)O3-0.05(Bi,Na,K)ZrO3 Thick Films with Oriented Nanophase Coexistence. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800691	6.4	11
95	A Coherently Strained Monoclinic [111]PbTiO3 Film Exhibiting Zero Poisson ß Ratio State. <i>Advanced Functional Materials</i> , 2019 , 29, 1901687	15.6	19
94	Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials. <i>Advanced Functional Materials</i> , 2019 , 29, 1902911	15.6	30
93	Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. <i>Materials Horizons</i> , 2019 , 6, 1548-1570	14.4	16
92	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. <i>Energy and Environmental Science</i> , 2019 , 12, 1969-1978	35.4	63
91	Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 17359-17367	9.5	22
90	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in n-Type AgnPb100InnTe100+2n (LIST). <i>Advanced Energy Materials</i> , 2019 , 9, 1900414	21.8	34

89	Rotatable precipitates change the scale-free to scale dependent statistics in compressed Ti nano-pillars. <i>Scientific Reports</i> , 2019 , 9, 3778	4.9	10
88	Piezoelectric Films: Outstanding Piezoelectric Performance in Lead-Free 0.95(K,Na)(Sb,Nb)O3-0.05(Bi,Na,K)ZrO3 Thick Films with Oriented Nanophase Coexistence (Adv. Electron. Mater. 4/2019). <i>Advanced Electronic Materials</i> , 2019 , 5, 1970020	6.4	1
87	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. <i>Small</i> , 2019 , 15, e1900248	11	44
86	Designing Energy Materials via Atomic-resolution Microscopy and Spectroscopy. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1998-1999	0.5	Ο
85	Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13987-13994	16.4	152
84	Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. <i>Nature Communications</i> , 2019 , 10, 3149	17.4	20
83	Multiscale Defects as Strong Phonon Scatters to Enhance Thermoelectric Performance in Mg2Sn1\(\text{\text{BSbx}} Solid Solutions. \text{Small Methods}, \text{2019}, 3, 1900412	12.8	6
82	Simultaneous Boost of Power Factor and Figure-of-Merit in In-Cu Codoped SnTe. <i>Small</i> , 2019 , 15, e1902	2493	29
81	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through introducing a small amount of Zn. <i>Materials Today Physics</i> , 2019 , 9, 100102	8	25
80	Percolated Strain Networks and Universal Scaling Properties of Strain Glasses. <i>Physical Review Letters</i> , 2019 , 123, 015701	7.4	9
79	Synergistic boost of output power density and efficiency in In-Li-codoped SnTe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 21998-22003	11.5	15
78	Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8236-8243	6.1	18
77	Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator. <i>Communications Physics</i> , 2019 , 2,	5.4	13
76	Enhanced Thermoelectric and Mechanical Properties in Yb0.3Co4Sb12 with In Situ Formed CoSi Nanoprecipitates. <i>Advanced Energy Materials</i> , 2019 , 9, 1902435	21.8	29
75	Defect Engineering of Oxygen-Deficient Manganese Oxide to Achieve High-Performing Aqueous Zinc Ion Battery. <i>Advanced Energy Materials</i> , 2019 , 9, 1803815	21.8	285
74	New insights into the role of dislocation engineering in N-type filled skutterudite CoSb3. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13622-13631	7.1	9
73	Intrinsically Low Thermal Conductivity in BiSbSe3: A Promising Thermoelectric Material with Multiple Conduction Bands. <i>Advanced Functional Materials</i> , 2019 , 29, 1806558	15.6	53
7 2	NiFe Layered Double-Hydroxide Nanosheets on a Cactuslike (Ni,Co)Se2 Support for Water Oxidation. <i>ACS Applied Nano Materials</i> , 2019 , 2, 325-333	5.6	11

(2018-2019)

71	Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. Journal of the American Chemical Society, 2019 , 141, 1141-1149	16.4	91
70	(Ni,Co)Se /NiCo-LDH Core/Shell Structural Electrode with the Cactus-Like (Ni,Co)Se Core for Asymmetric Supercapacitors. <i>Small</i> , 2019 , 15, e1803895	11	50
69	MetalBrganic framework-derived integrated nanoarrays for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9009-9018	13	54
68	Premartensite serving as an intermediary state between strain glass and martensite in ferromagnetic Ni-Fe-Mn-Ga. <i>Materials and Design</i> , 2018 , 152, 102-109	8.1	4
67	Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. <i>Nano Energy</i> , 2018 , 48, 73-80	17.1	418
66	Cactus-Like NiCoP/NiCo-OH 3D Architecture with Tunable Composition for High-Performance Electrochemical Capacitors. <i>Advanced Functional Materials</i> , 2018 , 28, 1800036	15.6	206
65	Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. <i>Nano Energy</i> , 2018 , 52, 246-255	17.1	117
64	Synergistic Compositional Mechanical Thermal Effects Leading to a Record High zT in n-Type V2VI3 Alloys Through Progressive Hot Deformation. <i>Advanced Functional Materials</i> , 2018 , 28, 1803617	15.6	50
63	Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self-Compensation and Mn Alloying. <i>Small</i> , 2018 , 14, e1802615	11	96
62	Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient ZincAir Battery Cathodes. <i>ACS Catalysis</i> , 2018 , 8, 8961-8969	13.1	250
61	Progress and prospects of aberration-corrected STEM for functional materials. <i>Ultramicroscopy</i> , 2018 , 194, 182-192	3.1	25
60	Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. <i>Energy and Environmental Science</i> , 2018 , 11, 248	6 ³ 2 ⁵ 495	129
59	Anomalous Hall magnetoresistance in a ferromagnet. <i>Nature Communications</i> , 2018 , 9, 2255	17.4	22
58	Orthorhombic Ti2O3: A Polymorph-Dependent Narrow-Bandgap Ferromagnetic Oxide. <i>Advanced Functional Materials</i> , 2018 , 28, 1705657	15.6	21
57	Investigations on electrical and thermal transport properties of Cu2SnSe3 with unusual coexisting nanophases. <i>Materials Today Physics</i> , 2018 , 7, 77-88	8	17
56	Decoding the Structural Origin of Piezoelectric and Thermoelectric Materials with Aberration-Corrected STEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 72-73	0.5	1
55	Open hollow Co P t clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20214-20223	13	29
54	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. <i>Advanced Materials</i> , 2018 , 30, e1802402	24	26

53	Epitaxial Ferroelectric Hf0.5Zr0.5O2 Thin Films and Their Implementations in Memristors for Brain-Inspired Computing. <i>Advanced Functional Materials</i> , 2018 , 28, 1806037	15.6	98
52	Practical High Piezoelectricity in Barium Titanate Ceramics Utilizing Multiphase Convergence with Broad Structural Flexibility. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15252-15260	16.4	105
51	Entropy Engineering of SnTe: Multi-Principal-Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State-of-the-Art Thermoelectric Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 186	02118	100
50	Understanding Phonon Scattering by Nanoprecipitates in Potassium-Doped Lead Chalcogenides. <i>ACS Applied Materials & Doped Lead Chalcogenides</i> .	9.5	4
49	The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. <i>Energy and Environmental Science</i> , 2017 , 10, 528-537	35.4	305
48	Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2. <i>Acta Materialia</i> , 2017 , 125, 542-549	8.4	41
47	Mg vacancy and dislocation strains as strong phonon scatterers in Mg 2 Si 1☑ Sb x thermoelectric materials. <i>Nano Energy</i> , 2017 , 34, 428-436	17.1	85
46	Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. <i>Energy and Environmental Science</i> , 2017 , 10, 2420-2431	35.4	89
45	Hollow Co O Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries. <i>Advanced Materials</i> , 2017 , 29, 1704117	24	325
44	Investigation on thermal transport and structural properties of InFeO 3 (ZnO) m with modulated layer structures. <i>Acta Materialia</i> , 2017 , 136, 235-241	8.4	9
43	Material descriptors for morphotropic phase boundary curvature in lead-free piezoelectrics. <i>Applied Physics Letters</i> , 2017 , 111, 032907	3.4	12
42	Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 28577-28585	9.5	55
41	Effect of martensitic structure on the magnetic field controlled damping effect in a NifeMnta ferromagnetic shape memory alloy. <i>Journal of Materials Science</i> , 2017 , 52, 12854-12860	4.3	6
40	Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-CuTe. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18732-18738	16.4	179
39	Metal-organic framework derived hollow CoS nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. <i>Nanoscale Horizons</i> , 2017 , 2, 342-348	10.8	189
38	Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. <i>Nano Energy</i> , 2017 , 39, 162-171	17.1	202
37	Tracking Atoms, Vacancies and Electrons via Aberration-corrected Microscopy and First-Principles Theory 2016 , 964-965		
36	Extremely Low Thermal Conductivity in Thermoelectric Ge0.55Pb0.45Te Solid Solutions via Se Substitution. <i>Chemistry of Materials</i> , 2016 , 28, 6367-6373	9.6	39

35	Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15459-1	15464	241
34	The Role of Electron P honon Interaction in Heavily Doped Fine-Grained Bulk Silicons as Thermoelectric Materials. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600171	6.4	28
33	Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT >2 by multi-functional alloying. <i>Journal of Materiomics</i> , 2016 , 2, 141-149	6.7	89
32	Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2366-73	16.4	213
31	Multiple Converged Conduction Bands in KBiSe: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16364-16371	16.4	95
30	Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. <i>NPG Asia Materials</i> , 2016 , 8, e302-e302	10.3	96
29	Enhancing the Figure of Merit of Heavy-Band Thermoelectric Materials Through Hierarchical Phonon Scattering. <i>Advanced Science</i> , 2016 , 3, 1600035	13.6	106
28	Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures. <i>ACS Nano</i> , 2015 , 9, 3307-13	16.7	69
27	Advanced electron microscopy for thermoelectric materials. <i>Nano Energy</i> , 2015 , 13, 626-650	17.1	67
26	Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. <i>Energy and Environmental Science</i> , 2015 , 8, 3298-3312	35.4	209
25	Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions. <i>Advanced Energy Materials</i> , 2015 , 5, 1500411	21.8	287
24	Strain glass transition in a multifunctional Eype Ti alloy. <i>Scientific Reports</i> , 2014 , 4, 3995	4.9	59
23	Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. Journal of the American Chemical Society, 2014 , 136, 11412-9	16.4	259
22	PN co-doping induced structural recovery of TiO 2 for overall water splitting under visible light irradiation. <i>Journal of Alloys and Compounds</i> , 2014 , 615, 79-83	5.7	26
21	Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. <i>Nature Communications</i> , 2014 , 5, 4515	17.4	373
20	High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13902-8	16.4	253
19	Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases. <i>Acta Materialia</i> , 2014 , 71, 176-184	8.4	66
18	High thermoelectric performance of Ge1⊠PbxSe0.5Te0.5 due to (Pb, Se) co-doping. <i>Acta Materialia</i> , 2014 , 74, 215-223	8.4	26

17	Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. <i>NPG Asia Materials</i> , 2014 , 6, e108-e108	10.3	119
16	Significantly Enhanced Thermoelectric Performance in n-type Heterogeneous BiAgSeS Composites. <i>Advanced Functional Materials</i> , 2014 , 24, 7763-7771	15.6	74
15	Electron Microscopy for Characterization of Thermoelectric Nanomaterials 2014 , 427-536		
14	Understanding the Role of Potassium Doping in PbTe-PbS Thermoelectrics. <i>Microscopy and Microanalysis</i> , 2014 , 20, 506-507	0.5	1
13	High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. <i>Energy and Environmental Science</i> , 2013 , 6, 1750	35.4	59
12	Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. <i>Energy and Environmental Science</i> , 2013 , 6, 2916	35.4	273
11	All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. <i>Energy and Environmental Science</i> , 2013 , 6, 3346	35.4	532
10	Fe substitution induced intermartensitic transition and its internal stress dependent transforming behavior in NiMnta based alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 581, 812-815	5.7	4
9	Role of sodium doping in lead chalcogenide thermoelectrics. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4624-7	16.4	111
8	Time-dependent ferroelectric transition in Pb(1☑)(Zr0.4Ti0.6)(1☑/4)O3 IkLa system. <i>Applied Physics Letters</i> , 2013 , 102, 222907	3.4	10
7	Spontaneous strain glass to martensite transition in ferromagnetic Ni-Co-Mn-Ga strain glass. <i>Applied Physics Letters</i> , 2013 , 102, 141909	3.4	18
6	On the Origin of Low Thermal Conductivity in High Thermoelectric Performance in n-type BiAgSeS. <i>Microscopy and Microanalysis</i> , 2013 , 19, 2000-2001	0.5	
5	Microstructure at morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramic: Coexistence of nano-scaled {110}-type rhombohedral twin and {110}-type tetragonal twin. <i>Journal of Applied Physics</i> , 2012 , 112, 052004	2.5	36
4	Large piezoelectricity and dielectric permittivity in BaTiO 3 -xBaSnO 3 system: The role of phase coexisting. <i>Europhysics Letters</i> , 2012 , 98, 27008	1.6	162
3	Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. <i>Applied Physics Letters</i> , 2011 , 99, 092901	3.4	215
2	Rationally optimized carrier effective mass and carrier density leads to high average ZT value in n-type PbSe. <i>Journal of Materials Chemistry A</i> ,	13	5
1	High-Ranged ZT Value Promotes Thermoelectric Cooling and Power Generation in n-Type PbTe. <i>Advanced Energy Materials</i> ,2200204	21.8	5