
Scott J Dixon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/589035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS Journal, 2022, 289, 374-385.	4.7	47
2	Excited to see you: New imaging approaches to detect ferrous iron inÂvivo. Cell Chemical Biology, 2022, 29, 3-4.	5.2	0
3	Positive feedback amplifies ferroptosis. Nature Cell Biology, 2022, 24, 4-5.	10.3	6
4	Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Science Alliance, 2022, 5, e202101157.	2.8	26
5	SU086, an inhibitor of HSP90, impairs glycolysis and represents a treatment strategy for advanced prostate cancer. Cell Reports Medicine, 2022, 3, 100502.	6.5	18
6	Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells. Cell Reports, 2022, 38, 110343.	6.4	14
7	Copper-induced cell death. Science, 2022, 375, 1231-1232.	12.6	222
8	Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118646119.	7.1	44
9	Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nature Chemical Biology, 2022, 18, 751-761.	8.0	47
10	Context-dependent regulation of ferroptosis sensitivity. Cell Chemical Biology, 2022, 29, 1409-1418.e6.	5.2	42
11	Quantification of drug-induced fractional killing using high-throughput microscopy. STAR Protocols, 2021, 2, 100300.	1.2	8
12	A compendium of kinetic modulatory profiles identifies ferroptosis regulators. Nature Chemical Biology, 2021, 17, 665-674.	8.0	78
13	Kinetic Heterogeneity of Cancer Cell Fractional Killing. Cell Reports, 2020, 32, 107845.	6.4	23
14	Reactivity-Based Probe of the Iron(II)-Dependent Interactome Identifies New Cellular Modulators of Ferroptosis. Journal of the American Chemical Society, 2020, 142, 19085-19093.	13.7	32
15	Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nature Cell Biology, 2020, 22, 1042-1048.	10.3	228
16	Dietary Lipids Induce Ferroptosis in Caenorhabditiselegans and Human Cancer Cells. Developmental Cell, 2020, 54, 447-454.e4.	7.0	142
17	Investigating Nonapoptotic Cell Death Using Chemical Biology Approaches. Cell Chemical Biology, 2020, 27, 376-386.	5.2	17
18	Systematic Identification of Regulators of Oxidative Stress Reveals Non-canonical Roles for Peroxisomal Import and the Pentose Phosphate Pathway. Cell Reports, 2020, 30, 1417-1433.e7.	6.4	49

SCOTT J DIXON

#	Article	IF	CITATIONS
19	p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. Journal of Cell Biology, 2020, 219, .	5.2	26
20	A ZDHHC5-GOLGA7 Protein Acyltransferase Complex Promotes Nonapoptotic Cell Death. Cell Chemical Biology, 2019, 26, 1716-1724.e9.	5.2	40
21	Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export. Developmental Cell, 2019, 51, 575-586.e4.	7.0	323
22	Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. Cell Chemical Biology, 2019, 26, 420-432.e9.	5.2	556
23	A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity. Cell Reports, 2019, 26, 1544-1556.e8.	6.4	146
24	GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 2019, 19, e1800311.	2.2	479
25	The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575, 688-692.	27.8	1,756
26	The Hallmarks of Ferroptosis. Annual Review of Cancer Biology, 2019, 3, 35-54.	4.5	370
27	Lipid Metabolism and Ferroptosis. , 2019, , 1-26.		2
28	Abstract 702: Kinetic analysis identifies determinants of sensitivity to MEK inhibitor-induced cell death. , 2019, , .		0
29	p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Reports, 2018, 22, 569-575.	6.4	389
30	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
31	The impact of non-genetic heterogeneity on cancer cell death. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 99-114.	5.2	41
32	Ferroptosis and Brain Injury. Developmental Neuroscience, 2018, 40, 382-395.	2.0	113
33	The p53-p21 pathway inhibits ferroptosis during metabolic stress. Oncotarget, 2018, 9, 24572-24573.	1.8	30
34	Protein palmitoylation and cancer. EMBO Reports, 2018, 19, .	4.5	206
35	MLKL Requires the Inositol Phosphate Code to Execute Necroptosis. Molecular Cell, 2018, 70, 936-948.e7.	9.7	111
36	Heat stress induces ferroptosis-like cell death in plants. Journal of Cell Biology, 2017, 216, 463-476.	5.2	162

SCOTT J DIXON

#	Article	IF	CITATIONS
37	Ferroptosis: bug or feature?. Immunological Reviews, 2017, 277, 150-157.	6.0	217
38	Systematic Quantification of Population Cell Death Kinetics in Mammalian Cells. Cell Systems, 2017, 4, 600-610.e6.	6.2	91
39	Ferroptosis-like death in plant cells. Molecular and Cellular Oncology, 2017, 4, e1302906.	0.7	9
40	Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171, 273-285.	28.9	4,081
41	Mechanisms of ferroptosis. Cellular and Molecular Life Sciences, 2016, 73, 2195-2209.	5.4	1,018
42	Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nature Chemical Biology, 2016, 12, 497-503.	8.0	671
43	An iron age for cancer therapy. Nature Nanotechnology, 2016, 11, 921-922.	31.5	63
44	Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 2015, 10, 1604-1609.	3.4	629
45	Connectivity Homology Enables Inter-Species Network Models of Synthetic Lethality. PLoS Computational Biology, 2015, 11, e1004506.	3.2	30
46	Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. ELife, 2014, 3, e02523.	6.0	1,296
47	The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 2014, 10, 9-17.	8.0	1,685
48	Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models. Journal of the American Chemical Society, 2014, 136, 4551-4556.	13.7	738
49	Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 2012, 149, 1060-1072.	28.9	9,007
50	Engineering drug combinations. Nature Chemical Biology, 2010, 6, 318-319.	8.0	9
51	Synthetic Genetic Array (SGA) Analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods in Enzymology, 2010, 470, 145-179.	1.0	175
52	An UNC-40 pathway directs postsynaptic membrane extension in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2009, 136, 911-922.	2.5	40
53	Exploring the conservation of synthetic lethal genetic interaction networks. Communicative and Integrative Biology, 2009, 2, 78-81.	1.4	22
54	ldentifying druggable disease-modifying gene products. Current Opinion in Chemical Biology, 2009, 13, 549-555.	6.1	91

SCOTT J DIXON

#	Article	IF	CITATIONS
55	Systematic Mapping of Genetic Interaction Networks. Annual Review of Genetics, 2009, 43, 601-625.	7.6	250
56	Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Developmental Biology, 2008, 318, 153-161.	2.0	16
57	Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16653-16658.	7.1	165
58	A global analysis of genetic interactions in Caenorhabditis elegans. Journal of Biology, 2007, 6, 8.	2.7	144
59	FGF negatively regulates muscle membrane extension in Caenorhabditis elegans. Development (Cambridge), 2006, 133, 1263-1275.	2.5	26
60	Muscle arm development in Caenorhabditis elegans. Development (Cambridge), 2005, 132, 3079-3092.	2.5	58