Xinyong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5890180/publications.pdf Version: 2024-02-01

XINVONC LUL

#	Article	IF	CITATIONS
1	Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. Journal of Medicinal Chemistry, 2016, 59, 2849-2878.	2.9	260
2	Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. Journal of Medicinal Chemistry, 2020, 63, 12256-12274.	2.9	183
3	Conformational restriction: an effective tactic in 'follow-on'-based drug discovery. Future Medicinal Chemistry, 2014, 6, 885-901.	1.1	163
4	HIVâ€I NNRTIs: structural diversity, pharmacophore similarity, and impliations for drug design. Medicinal Research Reviews, 2013, 33, E1-72.	5.0	161
5	Fsp3: A new parameter for drug-likeness. Drug Discovery Today, 2020, 25, 1839-1845.	3.2	156
6	Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discovery Today, 2016, 21, 118-132.	3.2	138
7	The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. Journal of Medicinal Chemistry, 2019, 62, 4851-4883.	2.9	124
8	Strategies for the Design of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Lessons from the Development of Seven Representative Paradigms. Journal of Medicinal Chemistry, 2012, 55, 3595-3613.	2.9	115
9	Overview of Recent Strategic Advances in Medicinal Chemistry. Journal of Medicinal Chemistry, 2019, 62, 9375-9414.	2.9	108
10	Design, Synthesis, and Evaluation of Thiophene[3,2- <i>d</i>]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. Journal of Medicinal Chemistry, 2016, 59, 7991-8007.	2.9	107
11	Design Strategies of Novel NNRTIs to Overcome Drug Resistance. Current Medicinal Chemistry, 2009, 16, 3903-3917.	1.2	92
12	Recent Advances in DAPYs and Related Analogues as HIV-1 NNRTIs. Current Medicinal Chemistry, 2011, 18, 359-376.	1.2	92
13	Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chemical Society Reviews, 2021, 50, 4514-4540.	18.7	84
14	New techniques and strategies in drug discovery. Chinese Chemical Letters, 2020, 31, 1695-1708.	4.8	82
15	Structure-Based Optimization of Thiophene[3,2- <i>d</i>]pyrimidine Derivatives as Potent HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Resistance-Associated Variants. Journal of Medicinal Chemistry, 2017, 60, 4424-4443.	2.9	79
16	Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches. European Journal of Medicinal Chemistry, 2015, 92, 754-765.	2.6	76
17	Identification of Dihydrofuro[3,4- <i>d</i>]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties. Journal of Medicinal Chemistry, 2019, 62, 1484-1501.	2.9	70
18	Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharmaceutica Sinica B, 2021, 11, 3035-3059.	5.7	70

#	Article	IF	CITATIONS
19	Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. European Journal of Medicinal Chemistry, 2018, 151, 339-350.	2.6	68
20	Exploiting the Tolerant Region I of the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Binding Pocket: Discovery of Potent Diarylpyrimidine-Typed HIV-1 NNRTIs against Wild-Type and E138K Mutant Virus with Significantly Improved Water Solubility and Favorable Safety Profiles. Journal of Medicinal Chemistry, 2019, 62, 2083-2098.	2.9	66
21	Designed Multiple Ligands: An Emerging Anti-HIV Drug Discovery Paradigm. Current Pharmaceutical Design, 2009, 15, 1893-1917.	0.9	65
22	Discovery of N-Substituted Oseltamivir Derivatives as Potent and Selective Inhibitors of H5N1 Influenza Neuraminidase. Journal of Medicinal Chemistry, 2014, 57, 8445-8458.	2.9	65
23	Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. European Journal of Medicinal Chemistry, 2020, 190, 112085.	2.6	65
24	Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors. ELife, 2018, 7, .	2.8	57
25	Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. European Journal of Medicinal Chemistry, 2018, 158, 478-492.	2.6	51
26	Structure-Based Bioisosterism Yields HIV-1 NNRTIs with Improved Drug-Resistance Profiles and Favorable Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2020, 63, 4837-4848.	2.9	50
27	Optimization of N-Substituted Oseltamivir Derivatives as Potent Inhibitors of Group-1 and -2 Influenza A Neuraminidases, Including a Drug-Resistant Variant. Journal of Medicinal Chemistry, 2018, 61, 6379-6397.	2.9	46
28	Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Advances, 2019, 9, 28961-28986.	1.7	42
29	Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 4: Design, synthesis and biological evaluation of novel imidazo[1,2-a]pyrazines. European Journal of Medicinal Chemistry, 2015, 93, 330-337.	2.6	41
30	Design, Synthesis, and Mechanism Study of Benzenesulfonamide-Containing Phenylalanine Derivatives as Novel HIV-1 Capsid Inhibitors with Improved Antiviral Activities. Journal of Medicinal Chemistry, 2020, 63, 4790-4810.	2.9	41
31	Update on Recent Developments in Small Molecular HIV-1 RNase H Inhibitors (2013-2016): Opportunities and Challenges. Current Medicinal Chemistry, 2018, 25, 1682-1702.	1.2	41
32	Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opinion on Drug Discovery, 2016, 11, 857-871.	2.5	39
33	Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2016–2019). Expert Opinion on Therapeutic Patents, 2019, 29, 871-879.	2.4	39
34	Targeting the hydrophobic channel of NNIBP: discovery of novel 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs with high potency against wild-type and K103N mutant virus. Organic and Biomolecular Chemistry, 2019, 17, 3202-3217.	1.5	39
35	Exploring the hydrophobic channel of NNIBP leads to the discovery of novel piperidine-substituted thiophene[3,2-d]pyrimidine derivatives as potent HIV-1 NNRTIs. Acta Pharmaceutica Sinica B, 2020, 10, 878-894.	5.7	39
36	Discovery and Characterization of Fluorine-Substituted Diarylpyrimidine Derivatives as Novel HIV-1 NNRTIs with Highly Improved Resistance Profiles and Low Activity for the hERG Ion Channel. Journal of Medicinal Chemistry, 2020, 63, 1298-1312.	2.9	37

#	Article	IF	CITATIONS
37	Structure-Based Optimization of N-Substituted Oseltamivir Derivatives as Potent Anti-Influenza A Virus Agents with Significantly Improved Potency against Oseltamivir-Resistant N1-H274Y Variant. Journal of Medicinal Chemistry, 2018, 61, 9976-9999.	2.9	35
38	Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discovery Today, 2019, 24, 629-635.	3.2	35
39	Recent Progress in the Research of Small Molecule HIV-1 RNase H Inhibitors. Current Medicinal Chemistry, 2014, 21, 1956-1967.	1.2	35
40	2,4,5-Trisubstituted Pyrimidines as Potent HIV-1 NNRTIs: Rational Design, Synthesis, Activity Evaluation, and Crystallographic Studies. Journal of Medicinal Chemistry, 2021, 64, 4239-4256.	2.9	33
41	Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, 2022, 12, 581-599.	5.7	33
42	Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 3729-3757.	2.9	33
43	Discovery of Novel Diarylpyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the "NNRTI Adjacent― Binding Site. ACS Medicinal Chemistry Letters, 2018, 9, 334-338.	1.3	32
44	5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase. European Journal of Medicinal Chemistry, 2018, 155, 714-724.	2.6	31
45	Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization. European Journal of Medicinal Chemistry, 2017, 130, 209-222.	2.6	30
46	Discovery of Thiophene[3,2- <i>d</i>]pyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the Tolerant Region I of NNIBP. ACS Medicinal Chemistry Letters, 2017, 8, 1188-1193.	1.3	30
47	Novel Human Urate Transporter 1 Inhibitors as Hypouricemic Drug Candidates with Favorable Druggability. Journal of Medicinal Chemistry, 2020, 63, 10829-10854.	2.9	30
48	Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery. ACS Medicinal Chemistry Letters, 2018, 9, 370-375.	1.3	28
49	Molecular design opportunities presented by solventâ€exposed regions of target proteins. Medicinal Research Reviews, 2019, 39, 2194-2238.	5.0	28
50	Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 121, 352-363.	2.6	27
51	Discovery of C-1 modified oseltamivir derivatives as potent influenza neuraminidase inhibitors. European Journal of Medicinal Chemistry, 2018, 146, 220-231.	2.6	26
52	Discovery of novel diarylpyrimidines as potent HIV-1 NNRTIs by investigating the chemical space of a less explored "hydrophobic channel― Organic and Biomolecular Chemistry, 2018, 16, 1014-1028.	1.5	26
53	"Old Dogs with New Tricks― exploiting alternative mechanisms of action and new drug design strategies for clinically validated HIV targets. Molecular BioSystems, 2014, 10, 1998.	2.9	25
54	Discovery of piperidine-substituted thiazolo[5,4-d]pyrimidine derivatives as potent and orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitors. Communications Chemistry, 2019, 2,	2.0	24

#	Article	IF	CITATIONS
55	Design, synthesis and biological evaluation of "Multi-Site―binding influenza virus neuraminidase inhibitors. European Journal of Medicinal Chemistry, 2019, 178, 64-80.	2.6	24
56	Design, synthesis and biological evaluation of novel acetamide-substituted doravirine and its prodrugs as potent HIV-1 NNRTIS. Bioorganic and Medicinal Chemistry, 2019, 27, 447-456.	1.4	24
57	Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays. Bioorganic and Medicinal Chemistry, 2017, 25, 4397-4406.	1.4	23
58	In situ click chemistry-based rapid discovery of novel HIV-1 NNRTIs by exploiting the hydrophobic channel and tolerant regions of NNIBP. European Journal of Medicinal Chemistry, 2020, 193, 112237.	2.6	23
59	An insight on medicinal aspects of novel HIV-1 capsid protein inhibitors. European Journal of Medicinal Chemistry, 2021, 217, 113380.	2.6	23
60	Novel fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2016105532A1, WO2016105534A1 and WO2016105564A1. Expert Opinion on Therapeutic Patents, 2017 383-391.	, 227,4	22
61	Efficient drug discovery by rational lead hybridization based on crystallographic overlay. Drug Discovery Today, 2019, 24, 805-813.	3.2	22
62	Multivalent Agents: A Novel Concept and Preliminary Practice in Anti-HIV Drug Discovery. Current Medicinal Chemistry, 2013, 20, 815-832.	1.2	21
63	Design, synthesis and evaluation of novel HIV-1 NNRTIs with dual structural conformations targeting the entrance channel of the NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 115, 53-62.	2.6	21
64	Novel diarylpyrimidines and diaryltriazines as potent HIV-1 NNRTIs with dramatically improved solubility: a patent evaluation of US20140378443A1. Expert Opinion on Therapeutic Patents, 2016, 26, 281-289.	2.4	21
65	Discovery of novel 1,2,3-triazole oseltamivir derivatives as potent influenza neuraminidase inhibitors targeting the 430-cavity. European Journal of Medicinal Chemistry, 2020, 187, 111940.	2.6	21
66	Recent Advances in the Research of HIV-1 RNase H Inhibitors. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1243-1251.	1.1	19
67	Arylazolyl(azinyl)thioacetanilides. Part 10: Design, synthesis and biological evaluation of novel substituted imidazopyridinylthioacetanilides as potent HIV-1 inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 5527-5536.	1.4	17
68	Targeting the entry step of SARS-CoV-2: a promising therapeutic approach. Signal Transduction and Targeted Therapy, 2020, 5, 98.	7.1	17
69	1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries. Bioorganic and Medicinal Chemistry, 2017, 25, 5779-5789.	1.4	16
70	Design, synthesis, and antiviral evaluation of novel hydrazone-substituted thiophene[3,2-d]pyrimidine derivatives as potent human immunodeficiency virus-1 inhibitors. Chemical Biology and Drug Design, 2018, 92, 2009-2021.	1.5	16
71	Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing. European Journal of Medicinal Chemistry, 2019, 182, 111619.	2.6	16
72	Design, synthesis, and biological evaluation of piperidinylâ€substituted [1,2,4]triazolo[1,5â€a]pyrimidine derivatives as potential antiâ€HIVâ€1 agents with reduced cytotoxicity. Chemical Biology and Drug Design, 2021, 97, 67-76.	1.5	16

#	Article	IF	CITATIONS
73	Boronic acid-containing diarylpyrimidine derivatives as novel HIV-1 NNRTIs: Design, synthesis and biological evaluation. Chinese Chemical Letters, 2021, 32, 4053-4057.	4.8	16
74	Design, synthesis, and evaluation of "dual-site―binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase. European Journal of Medicinal Chemistry, 2021, 211, 113063.	2.6	15
75	Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket. Part 2: Discovery of diarylpyrimidine derivatives as potent HIV-1 NNRTIs with high Fsp3 values and favorable drug-like properties. European Journal of Medicinal Chemistry, 2021, 213, 113051.	2.6	15
76	Design, synthesis, and mechanism study of dimerized phenylalanine derivatives as novel HIV-1 capsid inhibitors. European Journal of Medicinal Chemistry, 2021, 226, 113848.	2.6	15
77	Newly Emerging Strategies in Antiviral Drug Discovery: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Anniversary. Molecules, 2022, 27, 850.	1.7	15
78	Design, synthesis, and biologic evaluation of novel galloyl derivatives as <scp>HIV</scp> â€1 <scp>RN</scp> ase H inhibitors. Chemical Biology and Drug Design, 2019, 93, 582-589.	1.5	14
79	Medicinal chemistry strategies of targeting HIV-1 capsid protein for antiviral treatment. Future Medicinal Chemistry, 2020, 12, 1281-1284.	1.1	14
80	Discovery of Novel Dihydrothiopyrano[4,3- <i>d</i>]pyrimidine Derivatives as Potent HIV-1 NNRTIs with Significantly Reduced hERG Inhibitory Activity and Improved Resistance Profiles. Journal of Medicinal Chemistry, 2021, 64, 13658-13675.	2.9	14
81	First discovery of a potential carbonate prodrug of NNRTI drug candidate RDEA427 with submicromolar inhibitory activity against HIV-1 K103N/Y181C double mutant strain. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1348-1351.	1.0	13
82	Discovery of potent <scp>HIV</scp> â€1 nonâ€nucleoside reverse transcriptase inhibitors by exploring the structure–activity relationship of solventâ€exposed regions I. Chemical Biology and Drug Design, 2019, 93, 430-437.	1.5	13
83	Discovery of highly potent and selective influenza virus neuraminidase inhibitors targeting 150-cavity. European Journal of Medicinal Chemistry, 2021, 212, 113097.	2.6	13
84	Arylazolyl(azinyl)thioacetanilides. Part 20: Discovery of novel purinylthioacetanilides derivatives as potent HIV-1 NNRTIs via a structure-based bioisosterism approach. Bioorganic and Medicinal Chemistry, 2016, 24, 4424-4433.	1.4	12
85	Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase. Bioorganic and Medicinal Chemistry, 2019, 27, 3836-3845.	1.4	12
86	Discovery of novel anti-influenza agents via contemporary medicinal chemistry strategies (2014–2018) Tj ETÇ)q0,0,0 rg[BT /Overlock I
87	Structure–Activity Relationship Exploration of NNIBP Tolerant Region I Leads to Potent HIV-1 NNRTIs. ACS Infectious Diseases, 2020, 6, 2225-2234.	1.8	12
88	Identification of C5-NH ₂ Modified Oseltamivir Derivatives as Novel Influenza Neuraminidase Inhibitors with Highly Improved Antiviral Activities and Favorable Druggability. Journal of Medicinal Chemistry, 2021, 64, 17992-18009.	2.9	12
89	Discovery of Novel Bicyclic Imidazolopyridine-Containing Human Urate Transporter 1 Inhibitors as Hypouricemic Drug Candidates with Improved Efficacy and Favorable Druggability. Journal of Medicinal Chemistry, 2022, 65, 4218-4237.	2.9	12

	Arylazolyl(azinyl)thioacetanilides. Part 16: Structure-based bioisosterism design, synthesis and		
90	biological evaluation of novel pyrimidinylthioacetanilides as potent HIV-1 inhibitors. Bioorganic and	1.4	11
	Medicinal Chemistry, 2014, 22, 5290-5297.		

#	Article	IF	CITATIONS
91	The development of an effective synthetic route of lesinurad (RDEA594). Chemistry Central Journal, 2017, 11, 86.	2.6	11
92	Design, synthesis, and mechanistic investigations of phenylalanine derivatives containing a benzothiazole moiety as HIV-1 capsid inhibitors with improved metabolic stability. European Journal of Medicinal Chemistry, 2022, 227, 113903.	2.6	11
93	Targeting dual tolerant regions of binding pocket: Discovery of novel morpholine-substituted diarylpyrimidines as potent HIV-1 NNRTIs with significantly improved water solubility. European Journal of Medicinal Chemistry, 2020, 206, 112811.	2.6	10
94	Structure-Based Design and Discovery of Pyridyl-Bearing Fused Bicyclic HIV-1 Inhibitors: Synthesis, Biological Characterization, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2021, 64, 13604-13621.	2.9	10
95	Development of Novel Dihydrofuro[3,4- <i>d</i>]pyrimidine Derivatives as HIV-1 NNRTIs to Overcome the Highly Resistant Mutant Strains F227L/V106A and K103N/Y181C. Journal of Medicinal Chemistry, 2022, 65, 2458-2470.	2.9	10
96	Novel diaryltriazines with a picolinonitrile moiety as potent HIV-1 RT inhibitors: a patent evaluation of WO2016059647(A2). Expert Opinion on Therapeutic Patents, 2017, 27, 9-15.	2.4	9
97	Discovery, optimization, and target identification of novel coumarin derivatives as HIV-1 reverse transcriptase-associated ribonuclease H inhibitors. European Journal of Medicinal Chemistry, 2021, 225, 113769.	2.6	9
98	Novel RNase H Inhibitors Blocking RNA-directed Strand Displacement DNA Synthesis by HIV-1 Reverse Transcriptase. Journal of Molecular Biology, 2022, 434, 167507.	2.0	9
99	HIV-1 capsid inhibitors: a sword to destroy the virus. Future Medicinal Chemistry, 2022, 14, 605-607.	1.1	8
100	Identification of novel potent HIV-1 inhibitors by exploiting the tolerant regions of the NNRTIs binding pocket. European Journal of Medicinal Chemistry, 2021, 214, 113204.	2.6	6
101	SARS-CoV-2 Entry Inhibitors Targeting Virus-ACE2 or Virus-TMPRSS2 Interactions. Current Medicinal Chemistry, 2022, 29, 682-699.	1.2	5
102	Design, synthesis, and antiviral activity of phenylalanine derivatives as HIV-1 capsid inhibitors. Bioorganic and Medicinal Chemistry, 2021, 48, 116414.	1.4	4
103	Design, synthesis, and biological evaluation of novel double-winged galloyl derivatives as HIV-1 RNase H inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114563.	2.6	4
104	An improved synthesis approach of the HIV-1 inhibitor RDEA427, a pyrrolo[2,3-d]pyrimidine derivative. Arkivoc, 2017, 2016, 45-51.	0.3	3
105	Discovery of potential dual-target prodrugs of HIV-1 reverse transcriptase and nucleocapsid protein 7. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127287.	1.0	3
106	Discovery of Bioactive Molecules via Miniaturized Parallel Modular Reactions and Rapid Screening (2016-2021 update). Mini-Reviews in Organic Chemistry, 2021, 18, .	0.6	0