Kenji Goya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5890040/publications.pdf

Version: 2024-02-01

		1163117	1058476
28	194	8	14
papers	citations	h-index	g-index
28	28	28	160
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Compact, highly efficient, 21-W continuous-wave mid-infrared Fe:ZnSe coherent source, pumped by an Er:ZBLAN fiber laser. Optics Letters, 2018, 43, 5941.	3.3	35
2	Stable 35-W Er: ZBLAN fiber laser with CaF ₂ end caps. Applied Physics Express, 2019, 12, 102007.	2.4	26
3	Power scalable 30-W mid-infrared fluoride fiber amplifier. Optics Letters, 2019, 44, 4777.	3.3	24
4	Plane-by-plane femtosecond laser inscription of first-order fiber Bragg gratings in fluoride glass fiber for in situ monitoring of lasing evolution. Optics Express, 2018, 26, 33305.	3.4	22
5	40  kHz, 20  ns acousto-optically Q-switched 4  Âμm Fe:ZnSe laser pumped by a fluor Letters, 2020, 45, 2788.	ride fijber la	aser ₈ Optics
6	Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti:Sapphire laser for a fiber optic in-line/pico-liter spectrometer. Sensors and Actuators B: Chemical, 2015, 210, 685-691.	7.8	17
7	A fluoride fiber optics in-line sensor for mid-IR spectroscopy based on a side-polished structure. Sensors and Actuators B: Chemical, 2022, 351, 130904.	7.8	12
8	Femtosecond laser direct fabrication of micro-grooved textures on a capillary flow immunoassay microchip for spatially-selected antibody immobilization. Sensors and Actuators B: Chemical, 2017, 239, 1275-1281.	7.8	9
9	Practical High-Performance Lateral Flow Assay Based on Autonomous Microfluidic Replacement on a Film. Analytical Sciences, 2018, 34, 57-63.	1.6	7
10	Broadband mid-infrared amplified spontaneous emission from Er/Dy co-doped fluoride fiber with a simple diode-pumped configuration. Scientific Reports, 2021, 11, 5432.	3.3	7
11	A micropipette system based on low driving voltage carbon nanotube actuator. Microsystem Technologies, 2017, 23, 2657-2661.	2.0	5
12	A capillary flow immunoassay microchip utilizing inkjet printing-based antibody immobilization onto island surfacesâ€"toward sensitive and reproducible determination of carboxyterminal propeptide of type I procollagen. Journal of Micromechanics and Microengineering, 2016, 26, 045015.	2.6	4
13	Femtosecond laser microhole drilling inside a fused silica optical fiber with optical inner surface quality. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	4
14	Micro-void arrays in an optical fiber machined by a femtosecond laser for obtaining bending direction sensitive sensors. Proceedings of SPIE, 2013, , .	0.8	1
15	A Through-hole Array on Optical Fibers Fabricated by 1-kHz/400-nm Femtosecond Laser Pulses for an in-line/pico-Litter Spectrometer Design. Procedia Engineering, 2014, 87, 919-922.	1.2	1
16	Femtosecond Laser-Induced Surface Modification and its Application. , 0, , .		1
17	Fabrication of scattering source for an optical fiber sensor using femtosecond laser internal processing. Proceedings of SPIE, 2016, , .	0.8	1
18	<title>Femtosecond laser microprocessing for implanting sensor function into optical fibers</title> . Proceedings of SPIE, 2010, , .	0.8	0

#	Article	IF	CITATIONS
19	Hole drilling on glass optical fibers by a femtosecond laser. Proceedings of SPIE, 2013, , .	0.8	O
20	A fiber optic spectrometer produced by a femtosecond, 400-nm second harmonic Ti:sapphire laser. , 2015, , .		0
21	An LSPR fiber optic sensor based on in-line micro-holes fabricated by a second harmonic 400nm femtosecond laser., 2016,,.		O
22	Paper-like Surface Microstructure Fabricated on a Polymer Surface by Femtosecond Laser Machining. Analytical Sciences, 2018, 34, 33-38.	1.6	0
23	A Novel Optical Fiber Sensor Fabricated by Femtosecond Laser Processing for Directional Bending Detection. The Review of Laser Engineering, 2013, 41, 718.	0.0	O
24	Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process. Journal of Power System Engineering, 2015, 19, 5-10.	0.4	0
25	Femtosecond Laser Internal Processing for an Optical Fiber Sensor Inducing Interference of Optical Waveguide. Lecture Notes in Electrical Engineering, 2017, , 737-744.	0.4	O
26	Multipoint Measurement Using an Inline Fibre Optic Spectrometer Fabricated with a 400 nm Femtosecond Laser. Journal of Laser Micro Nanoengineering, 2017, 12, 120-125.	0.1	0
27	High-index-contrast Bragg gratings fabricated in fluoride fiber with 513-nm femtosecond laser. , 2019, , .		0
28	Compact CW mid-IR Fe:ZnSe coherent source pumped by Er:ZBLAN fiber laser., 2019,,.		0