
Khrystyna Harhay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5889730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: synthesis, properties, and applications. Colloid and Polymer Science, 2021, 299, 363-383.	2.1	43
2	Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128525.	4.7	42
3	Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. Journal of Colloid and Interface Science, 2013, 411, 247-256.	9.4	39
4	Temperature-Controlled Three-Stage Switching of Wetting, Morphology, and Protein Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 12035-12045.	8.0	34
5	Temperature-responsive properties of poly(4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Advances, 2016, 6, 87469-87477.	3.6	33
6	Water-dispersed thermo-responsive boron nitride nanotubes: synthesis and properties. Nanotechnology, 2016, 27, 035703.	2.6	31
7	Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering. Applied Surface Science, 2017, 407, 546-554.	6.1	29
8	Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Applied Surface Science, 2019, 463, 1124-1133.	6.1	27
9	Cholesterol-Based Grafted Polymer Brushes as Alignment Coating with Temperature-Tuned Anchoring for Nematic Liquid Crystals. Langmuir, 2016, 32, 11029-11038.	3.5	25
10	Synthesis and Postpolymerization Modification of Thermoresponsive Coatings Based on Pentaerythritol Monomethacrylate: Surface Analysis, Wettability, and Protein Adsorption. Langmuir, 2015, 31, 9675-9683.	3.5	23
11	Glass transition in temperature-responsive poly(butyl methacrylate) grafted polymer brushes. Impact of thickness and temperature on wetting, morphology, and cell growth. Journal of Materials Chemistry B, 2018, 6, 1613-1621.	5.8	19
12	Nanoarchitectonics at surfaces using multifunctional initiators of surface-initiated radical polymerization for fabrication of the nanocomposites. Applied Surface Science Advances, 2021, 5, 100104.	6.8	19
13	pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging. Beilstein Journal of Nanotechnology, 2019, 10, 2428-2439.	2.8	11
14	Modification of poly(ethylene terephthalate) surface with attached dextran macromolecules. Polymer International, 2009, 58, 1034-1040.	3.1	8
15	Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly(ethylene glycol). Chemistry and Chemical Technology, 2014, 8, 171-176.	1.1	8
16	Luminescent SiO2 nanoparticles for cell labelling: Combined water dispersion polymerization and 3D condensation controlled by oligoperoxide surfactant-initiator. European Polymer Journal, 2018, 103, 282-292.	5.4	4
17	Grafted polymer brush coatings for growth of cow granulosa cells and oocyte-cumulus cell complexes. Biointerphases, 2020, 15, 031006.	1.6	4
18	Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 554-573.	3.4	2

#	Article	IF	CITATIONS
19	Synthesis and Selfassambling of Amphiphilic Oligoesters Based on Pyromellitic Acid. Chemistry and Chemical Technology, 2016, 10, 159-172.	1.1	2