Philip Bartlett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5889431/publications.pdf Version: 2024-02-01

Ομιιίο Βλοτι έττ

#	Article	IF	CITATIONS
1	LiFePO ₄ Battery Material for the Production of Lithium from Brines: Effect of Brine Composition and Benefits of Dilution. ChemSusChem, 2022, 15, .	3.6	6
2	Electrodeposited WS ₂ monolayers on patterned graphene. 2D Materials, 2022, 9, 015025.	2.0	3
3	AC-assisted deposition of aggregate free silica films with vertical pore structure. Nanoscale, 2022, 14, 5404-5411.	2.8	7
4	Selection and characterisation of weakly coordinating solvents for semiconductor electrodeposition. Physical Chemistry Chemical Physics, 2022, 24, 8093-8103.	1.3	4
5	Diffusion in weakly coordinating solvents. Electrochimica Acta, 2022, 425, 140720.	2.6	2
6	SERS using nanostarâ€in avity structures. Journal of Raman Spectroscopy, 2022, 53, 1871-1879.	1.2	3
7	Tungsten disulfide thin films via electrodeposition from a single source precursor. Chemical Communications, 2021, 57, 10194-10197.	2.2	3
8	Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface. ACS Omega, 2021, 6, 3483-3489.	1.6	8
9	Lateral Growth of MoS ₂ 2D Material Semiconductors Over an Insulator Via Electrodeposition. Advanced Electronic Materials, 2021, 7, 2100419.	2.6	6
10	Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review. ACS Sensors, 2021, 6, 2025-2045.	4.0	19
11	Phase-Change Memory by GeSbTe Electrodeposition in Crossbar Arrays. ACS Applied Electronic Materials, 2021, 3, 3610-3618.	2.0	12
12	Electrodeposition of GeSbTe-Based Resistive Switching Memory in Crossbar Arrays. Journal of Physical Chemistry C, 2021, 125, 26247-26255.	1.5	9
13	Large-Area Electrodeposition of Few-Layer MoS ₂ on Graphene for 2D Material Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 49786-49794.	4.0	21
14	Thermoelectric Properties of Bismuth Telluride Thin Films Electrodeposited from a Nonaqueous Solution. ACS Omega, 2020, 5, 14679-14688.	1.6	16
15	Chloroantimonate electrochemistry in dichloromethane. Electrochimica Acta, 2020, 354, 136692.	2.6	8
16	Direct Detection and Discrimination of Nucleotide Polymorphisms Using Anthraquinone Labeled DNA Probes. Frontiers in Chemistry, 2020, 8, 381.	1.8	6
17	Using GISAXS to Detect Correlations between the Locations of Gold Particles Electrodeposited from an Aqueous Solution. Langmuir, 2020, 36, 4432-4438.	1.6	9
18	Electrodeposition of MoS ₂ from Dichloromethane. Journal of the Electrochemical Society, 2020, 167, 106511.	1.3	16

#	Article	IF	CITATIONS
19	Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodeposition. Faraday Discussions, 2019, 213, 339-355.	1.6	14
20	Direct Electron-Transfer Anisotropy of a Site-Specifically Immobilized Cellobiose Dehydrogenase. ACS Catalysis, 2019, 9, 7607-7615.	5.5	30
21	Waveguide Absorption Spectroscopy of Bovine Serum Albumin in the Mid-Infrared Fingerprint Region. ACS Sensors, 2019, 4, 1749-1753.	4.0	22
22	Site-Directed Immobilization of Bilirubin Oxidase for Electrocatalytic Oxygen Reduction. ACS Catalysis, 2019, 9, 2068-2078.	5.5	64
23	Valence change ReRAMs (VCM) - Experiments and modelling: general discussion. Faraday Discussions, 2019, 213, 259-286.	1.6	2
24	Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: general discussion. Faraday Discussions, 2019, 213, 115-150.	1.6	5
25	Phase-change memories (PCM) – Experiments and modelling: general discussion. Faraday Discussions, 2019, 213, 393-420.	1.6	7
26	Studying Direct Electron Transfer by Siteâ€Directed Immobilization of Cellobiose Dehydrogenase. ChemElectroChem, 2019, 6, 700-713.	1.7	27
27	Electrodeposition of bismuth telluride from a weakly coordinating, non-aqueous solution. Journal of Electroanalytical Chemistry, 2019, 839, 134-140.	1.9	7
28	Preface. Faraday Discussions, 2019, 213, 9-10.	1.6	0
29	Exploration of the Smallest Diameter Tin Nanowires Achievable with Electrodeposition: Sub 7 nm Sn Nanowires Produced by Electrodeposition from a Supercritical Fluid. Nano Letters, 2018, 18, 941-947.	4.5	21
30	There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. Journal of Electroanalytical Chemistry, 2018, 819, 26-37.	1.9	144
31	Electrodeposition of Crystalline HgTe from a Non-Aqueous Plating Bath. Journal of the Electrochemical Society, 2018, 165, D802-D807.	1.3	5
32	Electrodeposition of a Functional Solid State Memory Material: Germanium Antimony Telluride from a Non-Aqueous Plating Bath. Journal of the Electrochemical Society, 2018, 165, D557-D567.	1.3	9
33	Electrodeposition of tin nanowires from a dichloromethane based electrolyte. RSC Advances, 2018, 8, 24013-24020.	1.7	11
34	Active gas replenishment and sensing of the wetting state in a submerged superhydrophobic surface. Soft Matter, 2017, 13, 1413-1419.	1.2	10
35	Tin, Bismuth, and Tin–Bismuth Alloy Electrodeposition from Chlorometalate Salts in Deep Eutectic Solvents. ChemistryOpen, 2017, 6, 393-401.	0.9	24
36	Plastic Reactor Suitable for High Pressure and Supercritical Fluid Electrochemistry. Journal of the Electrochemical Society, 2017, 164, H375-H381.	1.3	2

#	Article	IF	CITATIONS
37	A Flexible Method for the Stable, Covalent Immobilization of Enzymes at Electrode Surfaces. ChemElectroChem, 2017, 4, 1528-1534.	1.7	48
38	Supercritical fluid electrodeposition, structural and electrical characterisation of tellurium nanowires. RSC Advances, 2017, 7, 40720-40726.	1.7	8
39	Electrodeposition of Protocrystalline Germanium from Supercritical Difluoromethane. ChemElectroChem, 2016, 3, 726-733.	1.7	9
40	Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation. Chemistry - A European Journal, 2016, 22, 1030-1036.	1.7	6
41	A reference electrode for use in supercritical difluoromethane. Electrochimica Acta, 2016, 187, 323-328.	2.6	3
42	A Versatile Precursor System for Supercritical Fluid Electrodeposition of Mainâ€Group Materials. Chemistry - A European Journal, 2016, 22, 302-309.	1.7	17
43	The voltammetry of decamethylferrocene and coboltacene in supercritical difluoromethane (R32). Journal of Electroanalytical Chemistry, 2016, 780, 282-289.	1.9	4
44	Haloplumbate salts as reagents for the non-aqueous electrodeposition of lead. RSC Advances, 2016, 6, 73323-73330.	1.7	2
45	Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy. Optics Letters, 2016, 41, 4146.	1.7	28
46	Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2016, 70, 1384-1391.	1.2	6
47	Using Electrochemical SERS to Measure the Redox Potential of Drug Molecules Bound to dsDNA—a Study of Mitoxantrone. Electrochimica Acta, 2016, 187, 684-692.	2.6	28
48	Specifically horizontally tethered DNA probes on Au surfaces allow labelled and label-free DNA detection using SERS and electrochemically driven melting. Chemical Science, 2016, 7, 386-393.	3.7	30
49	The Role of Electrochemical Engineering in Our Energy Future. Advances in Electrochemical Science and Engineering, 2015, , 1-6.	0.0	Ο
50	Electrochemistry in supercritical fluids. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150007.	1.6	19
51	Supercritical Fluid Electrodeposition of Elemental Germanium onto Titanium Nitride Substrates. Journal of the Electrochemical Society, 2015, 162, D619-D624.	1.3	12
52	Divalent ytterbium complexes with crown and heterocrown ethers. Dalton Transactions, 2015, 44, 2953-2955.	1.6	11
53	Using Surface-Enhanced Raman Spectroscopy and Electrochemically Driven Melting to Discriminate <i>Yersinia pestis</i> from <i>Y. pseudotuberculosis</i> Based on Single Nucleotide Polymorphisms within Unpurified Polymerase Chain Reaction Amplicons. Analytical Chemistry, 2015, 87, 1605-1612.	3.2	27
54	The effect of temperature on electrochemically driven denaturation monitored by SERS. Bioelectrochemistry, 2015, 106, 353-358.	2.4	9

#	Article	IF	CITATIONS
55	Strain discrimination of Yersinia pestis using a SERS-based electrochemically driven melting curve analysis of variable number tandem repeat sequences. Chemical Science, 2015, 6, 1846-1852.	3.7	12
56	Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge ₂ Sb ₂ Te ₅ phase change memory. Materials Horizons, 2015, 2, 420-426.	6.4	28
57	Wetting of Surfaces Made of Hydrophobic Cavities. Langmuir, 2015, 31, 9325-9330.	1.6	14
58	Phase-Change Memory Properties of Electrodeposited Ge-Sb-Te Thin Film. Nanoscale Research Letters, 2015, 10, 432.	3.1	12
59	Electrochemical studies of decamethylferrocene in supercritical carbon dioxide mixtures. Physical Chemistry Chemical Physics, 2015, 17, 261-267.	1.3	13
60	Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission. PLoS ONE, 2014, 9, e109104.	1.1	62
61	Halometallate Complexes of Germanium(II) and (IV): Probing the Role of Cation, Oxidation State and Halide on the Structural and Electrochemical Properties. Chemistry - A European Journal, 2014, 20, 5019-5027.	1.7	26
62	The Electrodeposition of Silver from Supercritical Carbon Dioxide/Acetonitrile. ChemElectroChem, 2014, 1, 187-194.	1.7	19
63	Electrodeposition from supercritical fluids. Physical Chemistry Chemical Physics, 2014, 16, 9202.	1.3	41
64	Preparation of copper sphere segment void templates for electrochemical SERS and their use to study the interaction of amino acids with copper under potentiostatic control. Electrochimica Acta, 2014, 144, 400-405.	2.6	14
65	Design of Maleimideâ€Functionalised Electrodes for Covalent Attachment of Proteins through Free Surface Cysteine Groups. Chemistry - A European Journal, 2014, 20, 5550-5554.	1.7	10
66	A study of the modification of glassy carbon and edge and basal plane highly oriented pyrolytic graphite electrodes modified with anthraquinone using diazonium coupling and solid phase synthesis and their use for oxygen reduction. Journal of Electroanalytical Chemistry, 2013, 706, 25-32.	1.9	26
67	Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts. RSC Advances, 2013, 3, 15645.	1.7	43
68	Denaturation of dsDNA immobilised at a negatively charged gold electrode is not caused by electrostatic repulsion. Chemical Science, 2013, 4, 1625.	3.7	32
69	The deposition of mesoporous Ni/Co alloy using cetyltrimethylammonium bromide as the surfactant in the lyotropic liquid crystalline phase bath. Journal of Electroanalytical Chemistry, 2013, 688, 232-236.	1.9	10
70	Solid phase modification of carbon nanotubes with anthraquinone and nitrobenzene functional groups. Electrochemistry Communications, 2013, 34, 258-262.	2.3	12
71	A Hisâ€Tagged <i>Melanocarpus albomyces</i> Laccase and its Electrochemistry upon Immobilisation on NTAâ€Modified Electrodes and in Conducting Polymer Films. ChemPhysChem, 2013, 14, 2225-2231.	1.0	13
72	Evidence for enhanced capacitance and restricted motion of an ionic liquid confined in 2 nm diameter Pt mesopores. Physical Chemistry Chemical Physics, 2012, 14, 3872.	1.3	17

#	Article	IF	CITATIONS
73	Direct assembly of three-dimensional mesh plasmonic rolls. Applied Physics Letters, 2012, 100, 193107.	1.5	15
74	A Label-Free, Electrochemical SERS-Based Assay for Detection of DNA Hybridization and Discrimination of Mutations. Journal of the American Chemical Society, 2012, 134, 14099-14107.	6.6	92
75	Incident Wavelength Resolved Resonant SERS on Au Sphere Segment Void (SSV) Arrays. Journal of Physical Chemistry C, 2012, 116, 3414-3420.	1.5	32
76	Influence of macroporous gold support and its functionalization on lactate oxidase-based biosensors response. Talanta, 2012, 94, 328-334.	2.9	32
77	Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. Journal of Neurophysiology, 2012, 108, 1793-1803.	0.9	54
78	Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates. Physical Review B, 2012, 85, .	1.1	28
79	Modification of nanostructured gold surfaces with organic functional groups using electrochemical and solid-phase synthesis methodologies. Journal of Electroanalytical Chemistry, 2012, 670, 42-49.	1.9	7
80	High-Throughput Synthesis and Electrochemical Screening of a Library of Modified Electrodes for NADH Oxidation. Journal of the American Chemical Society, 2012, 134, 18022-18033.	6.6	35
81	Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase. Physical Chemistry Chemical Physics, 2012, 14, 11882.	1.3	41
82	Real-Time Surface-Enhanced Raman Spectroscopy Monitoring of Surface pH during Electrochemical Melting of Double-Stranded DNA. Langmuir, 2012, 28, 5464-5470.	1.6	17
83	Electrodeposition of germanium from supercritical fluids. Physical Chemistry Chemical Physics, 2012, 14, 1517-1528.	1.3	33
84	Covalent modification of carbon nanotubes with anthraquinone by electrochemical grafting and solid phase synthesis. Electrochimica Acta, 2012, 68, 74-80.	2.6	30
85	The effect of base-pair sequence on electrochemically driven denaturation. Bioelectrochemistry, 2012, 85, 7-13.	2.4	17
86	Phase behaviour and conductivity study of electrolytes in supercritical hydrofluorocarbons. Physical Chemistry Chemical Physics, 2011, 13, 190-198.	1.3	14
87	SERS from two-tier sphere segment void substrates. Physical Chemistry Chemical Physics, 2011, 13, 16661.	1.3	17
88	The effect of Bi adsorption on CO oxidation inside 1.8 nm Pt pores. Physical Chemistry Chemical Physics, 2011, 13, 17964.	1.3	2
89	Dressing Plasmons in Particle-in-Cavity Architectures. Nano Letters, 2011, 11, 1221-1226.	4.5	101
90	SERS from molecules bridging the gap of particle-in-cavity structures. Chemical Communications, 2011, 47, 6335.	2.2	36

#	Article	IF	CITATIONS
91	An analysis of the kinetics of oxidation of ascorbate at poly(aniline)-poly(styrene sulfonate) modified microelectrodes. Physical Chemistry Chemical Physics, 2011, 13, 5365.	1.3	18
92	Enhancing solar cells with localized plasmons in nanovoids. Optics Express, 2011, 19, 11256.	1.7	76
93	The oxidation of ascorbate at copolymeric sulfonated poly(aniline) coated on glassy carbon electrodes. Bioelectrochemistry, 2011, 80, 105-113.	2.4	22
94	Enhancing solar cells with localized plasmons in nanovoids. , 2011, , .		0
95	Tunable 3D Plasmonic Swiss Rolls. , 2011, , .		0
96	Dressing Plasmons in Particle-in-Cavity Architectures. , 2011, , .		68
97	Electrodeposition of PANi films on platinum needle type microelectrodes. Application to the oxidation of ascorbate in human plasma. Analytica Chimica Acta, 2010, 676, 1-8.	2.6	29
98	Study of Carbon Monoxide Oxidation on Mesoporous Platinum. ChemPhysChem, 2010, 11, 2896-2905.	1.0	11
99	Analysis of Short Tandem Repeats by Using SERS Monitoring and Electrochemical Melting. Angewandte Chemie - International Edition, 2010, 49, 5917-5920.	7.2	18
100	The application of the relaxation and simplex method to the analysis of data for glucose electrodes based on glucose oxidase immobilised in an osmium redox polymer. Journal of Electroanalytical Chemistry, 2010, 646, 24-32.	1.9	26
101	Synthesis and structure of [{C7F15CO2}2AgAu(PPh3)]2 and its use in electrodeposition of gold–silver alloys. Inorganica Chimica Acta, 2010, 363, 1048-1051.	1.2	6
102	Position-dependent coupling between a channel waveguide and a distorted microsphere resonator. Journal of Applied Physics, 2010, 107, 053105.	1.1	22
103	Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation. Physical Chemistry Chemical Physics, 2010, 12, 10018.	1.3	78
104	Understanding the Surface-Enhanced Raman Spectroscopy "Background― Journal of Physical Chemistry C, 2010, 114, 7242-7250.	1.5	118
105	The electrodeposition of copper from supercritical CO2/acetonitrile mixtures and from supercritical trifluoromethane. Physical Chemistry Chemical Physics, 2010, 12, 11744.	1.3	25
106	Phase behaviour and conductivity study on multi-component mixtures for electrodeposition in supercritical fluids. Physical Chemistry Chemical Physics, 2010, 12, 492-501.	1.3	25
107	Nanovoid Plasmonic-Enhanced Low-Cost Photovoltaics. , 2010, , .		0

108 Fabrication of plasmonic Au nano-void trench arrays by guided self-assembly. , 2009, , .

#	Article	IF	CITATIONS
109	The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly. Nanotechnology, 2009, 20, 285309.	1.3	13
110	Electrodeposition of metals from supercritical fluids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14768-14772.	3.3	70
111	Covalent Modification of Glassy Carbon Surfaces by Using Electrochemical and Solidâ€Phase Synthetic Methodologies: Application to Bi―and Trifunctionalisation with Different Redox Centres. Chemistry - A European Journal, 2009, 15, 11928-11936.	1.7	19
112	The Use of an Electroactive Marker as a SERS Label in an <i>E</i> â€melting Mutation Discrimination Assay. Electroanalysis, 2009, 21, 2190-2197.	1.5	19
113	Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH. Bioelectrochemistry, 2009, 76, 115-125.	2.4	36
114	UV SERS at well ordered Pd sphere segment void (SSV) nanostructures. Physical Chemistry Chemical Physics, 2009, 11, 1023-1026.	1.3	42
115	Manipulating Spheres That Sink: Assembly of Micrometer Sized Glass Spheres for Optical Coupling. Langmuir, 2009, 25, 1872-1880.	1.6	5
116	Relating SERS Intensity to Specific Plasmon Modes on Sphere Segment Void Surfaces. Journal of Physical Chemistry C, 2009, 113, 9284-9289.	1.5	83
117	Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templates. Journal of Materials Chemistry, 2009, 19, 3855.	6.7	51
118	Relaxation and Simplex mathematical algorithms applied to the study of steady-state electrochemical responses of immobilized enzyme biosensors: Comparison with experiments. Journal of Electroanalytical Chemistry, 2008, 616, 87-98.	1.9	31
119	Sharp ornered Liquid Drops by Wetting of Nanoscale Features. Small, 2008, 4, 2140-2142.	5.2	5
120	Electrochemical synthesis of macroporous zinc oxide layers by employing hydrogen peroxide as oxygen precursor. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2365-2370.	0.8	12
121	Covalent Tethering of Organic Functionality to the Surface of Glassy Carbon Electrodes by Using Electrochemical and Solidâ€Phase Synthesis Methodologies. Chemistry - A European Journal, 2008, 14, 2548-2556.	1.7	59
122	The assembly of micron sized glass spheres on structured surfaces by dewetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 327, 71-78.	2.3	5
123	Extracting kinetic parameters for homogeneous [Os(bpy)2ClPyCOOH]+ mediated enzyme reactions from cyclic voltammetry and simulations. Bioelectrochemistry, 2008, 74, 201-209.	2.4	36
124	Omnidirectional absorption in nanostructured metal surfaces. Nature Photonics, 2008, 2, 299-301.	15.6	430
125	Covalent modification of glassy carbon surface with organic redox probes through diamine linkers using electrochemical and solid-phase synthesis methodologies. Journal of Materials Chemistry, 2008, 18, 4917.	6.7	59
126	SERS-Melting: A New Method for Discriminating Mutations in DNA Sequences. Journal of the American Chemical Society, 2008, 130, 15589-15601.	6.6	165

#	Article	IF	CITATIONS
127	Imaging optical near fields at metallic nanoscale voids. Physical Review B, 2008, 78, .	1.1	23
128	Quantitative Electrochemical SERS of Flavin at a Structured Silver Surface. Langmuir, 2008, 24, 7018-7023.	1.6	64
129	Templated self-assembly and nano-plasmonics of nano-void surfaces. , 2008, , .		О
130	SERS at Structured Palladium and Platinum Surfaces. Journal of the American Chemical Society, 2007, 129, 7399-7406.	6.6	185
131	Reproducible SERRS from structured gold surfaces. Physical Chemistry Chemical Physics, 2007, 9, 6016.	1.3	89
132	Controlled Assembly of Micrometer-Sized Spheres:  Theory and Application. Langmuir, 2007, 23, 7859-7873.	1.6	16
133	Understanding Plasmons in Nanoscale Voids. Nano Letters, 2007, 7, 2094-2100.	4.5	182
134	Tuning plasmons on nano-structured substrates for NIR-SERS. Physical Chemistry Chemical Physics, 2007, 9, 104-109.	1.3	107
135	Transport mechanisms at Ni-Si Schottky barriers for spin injection. , 2006, , .		Ο
136	Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids. Physical Review Letters, 2006, 97, 266808.	2.9	269
137	Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. Optics Express, 2006, 14, 1965.	1.7	45
138	Mie plasmon enhanced diffraction of light from nanoporous metal surfaces. Optics Express, 2006, 14, 11964.	1.7	22
139	Sculpted substrates for SERS. Faraday Discussions, 2006, 132, 191-199.	1.6	141
140	Localized and delocalized plasmons in metallic nanovoids. Physical Review B, 2006, 74, .	1.1	250
141	Tuning localized plasmons in nanostructured metamaterials for surface-enhanced Raman scattering applications. , 2006, , WB5.		Ο
142	Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly. Journal of Applied Physics, 2006, 100, 113720.	1.1	17
143	Shape induced anomalies in vortex pinning and dynamics of superconducting antidot arrays with spherical cavities. Applied Physics Letters, 2006, 89, 092503.	1.5	29
144	Easily Coupled Whispering Gallery Plasmons in Dielectric Nanospheres Embedded in Gold Films. Physical Review Letters, 2006, 97, 137401.	2.9	71

#	Article	IF	CITATIONS
145	Oscillatory thickness dependence of the coercive field in magnetic three-dimensional antidot arrays. Applied Physics Letters, 2006, 88, 062511.	1.5	21
146	Bioelectrocatalysis with modified highly ordered macroporous electrodes. Journal of Electroanalytical Chemistry, 2005, 579, 181-187.	1.9	46
147	Electrochemical SERS at a structured gold surface. Electrochemistry Communications, 2005, 7, 740-744.	2.3	171
148	Self-assembly routes towards creating superconducting and magnetic arrays. Journal of Low Temperature Physics, 2005, 139, 339-349.	0.6	4
149	Oscillatory thickness dependence of the coercive field in three-dimensional anti-dot arrays from self-assembly. Journal of Applied Physics, 2005, 97, 10J701.	1.1	6
150	Voltammetry and determination of metronidazole at a carbon fiber microdisk electrode. Talanta, 2005, 66, 869-874.	2.9	79
151	Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces. Physical Review Letters, 2005, 95, 116802.	2.9	154
152	Wetting of Regularly Structured Gold Surfaces. Langmuir, 2005, 21, 1753-1757.	1.6	217
153	Optical coupling between a self-assembled microsphere grating and a rib waveguide. Applied Physics Letters, 2004, 84, 3513-3515.	1.5	7
154	Simultaneous SPR and electrochemical sensing of an alkane-thiol self-assembled monolayer (SAM): toward an optical biosensor. , 2004, 5502, 271.		0
155	The measurement of alkaline phosphatase at nanomolar concentration within 70 s using a disposable microelectrochemical transistor. Bioelectrochemistry, 2004, 64, 53-59.	2.4	14
156	A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochemistry Communications, 2004, 6, 447-453.	2.3	66
157	Phase interrogation of an integrated optical SPR sensor. Sensors and Actuators B: Chemical, 2004, 97, 114-121.	4.0	61
158	The demonstration of an enhanced microelectrochemical transistor for measurements in neutral solution at low analyte concentration. Bioelectrochemistry, 2004, 64, 15-22.	2.4	13
159	The effect of surface species on the rate of H sorption into nanostructured Pd. Physical Chemistry Chemical Physics, 2004, 6, 2895.	1.3	28
160	Tunable resonant optical microcavities by self-assembled templating. Optics Letters, 2004, 29, 1500.	1.7	17
161	Optical properties of nanostructured metal films. Faraday Discussions, 2004, 125, 117.	1.6	185
162	Preparation and characterization of H1–e rhodium films. Microporous and Mesoporous Materials, 2003, 62, 73-79.	2.2	51

#	Article	IF	CITATIONS
163	Electrocatalysis with monolayer modified highly organized macroporous electrodes. Electrochemistry Communications, 2003, 5, 747-751.	2.3	49
164	Measurement of the Kinetic Isotope Effect for the Oxidation of NADH at a Poly(aniline)-Modified Electrode. Journal of the American Chemical Society, 2003, 125, 4014-4015.	6.6	37
165	A Micromachined Calorimetric Gas Sensor:Â an Application of Electrodeposited Nanostructured Palladium for the Detection of Combustible Gases. Analytical Chemistry, 2003, 75, 126-132.	3.2	50
166	Electrochemical Deposition of Nanostructured (H1-e) Layers of Two Metals in Which Pores within the Two Layers Interconnect. Chemistry of Materials, 2003, 15, 2962-2968.	3.2	41
167	Electrochemical deposition of macroporous magnetic networks using colloidal templates. Journal of Materials Chemistry, 2003, 13, 2596.	6.7	115
168	The effect of calcium ions on the electrocatalytic oxidation of NADH by poly(aniline)-poly(vinylsulfonate) and poly(aniline)-poly(styrenesulfonate) modified electrodes. Physical Chemistry Chemical Physics, 2003, 5, 588-593.	1.3	11
169	Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale. Applied Physics Letters, 2003, 83, 767-769.	1.5	35
170	Magnetic antidot arrays from self-assembly template methods. Journal of Applied Physics, 2003, 93, 7322-7324.	1.1	41
171	The preparation and characterisation of H1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases. Physical Chemistry Chemical Physics, 2002, 4, 3835-3842.	1.3	173
172	Templated electrochemical deposition of nanostructured macroporous PbO2. Journal of Materials Chemistry, 2002, 12, 3130-3135.	6.7	88
173	Waveguide surface plasmon resonance studies of surface reactions on gold electrodes. Faraday Discussions, 2002, 121, 139-152.	1.6	12
174	Highly Ordered Macroporous Gold and Platinum Films Formed by Electrochemical Deposition through Templates Assembled from Submicron Diameter Monodisperse Polystyrene Spheres. Chemistry of Materials, 2002, 14, 2199-2208.	3.2	328
175	A method for the determination of enzyme mass loading on an electrode surface through radioisotope labelling. Biosensors and Bioelectronics, 2002, 17, 965-972.	5.3	8
176	Immobilisation of enzymes on poly(aniline)–poly(anion) composite films. Preparation of bioanodes for biofuel cell applications. Bioelectrochemistry, 2002, 55, 13-15.	2.4	57
177	The design of dehydrogenase enzymes for use in a biofuel cell: the role of genetically introduced peptide tags in enzyme immobilization on electrodes. Bioelectrochemistry, 2002, 55, 21-23.	2.4	31
178	Modified electrodes for NADH oxidation and dehydrogenase-based biosensors. Bioelectrochemistry, 2002, 56, 117-122.	2.4	59
179	Immobilisation of lactate dehydrogenase on poly(aniline)–poly(acrylate) and poly(aniline)–poly(vinyl) Tj ET	Qq1_1_0.78	84314 rgBT (
180	Oxidation of NADH produced by a lactate dehydrogenase immobilised on poly(aniline)–poly(anion) composite films. Journal of Electroanalytical Chemistry, 2002, 538-539, 253-259.	1.9	21

#	Article	IF	CITATIONS
181	Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes. Analytical Chemistry, 2002, 74, 1322-1326.	3.2	351
182	Confined Plasmons in Metallic Nanocavities. Physical Review Letters, 2001, 87, 176801.	2.9	170
183	The oxidation of ascorbate at poly(aniline)–poly(vinylsulfonate) composite coated electrodes. Physical Chemistry Chemical Physics, 2001, 3, 1491-1496.	1.3	77
184	Electrochemical Characterization of a Templated Insulating Polymer-Modified Electrode. Analytical Chemistry, 2001, 73, 2855-2861.	3.2	29
185	Mesoporous Pt/Ru Alloy from the Hexagonal Lyotropic Liquid Crystalline Phase of a Nonionic Surfactant. Chemistry of Materials, 2001, 13, 1444-1446.	3.2	126
186	Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions. Applied Optics, 2001, 40, 6242.	2.1	12
187	Liquid crystal phase templated mesoporous platinum alloy. Microporous and Mesoporous Materials, 2001, 44-45, 159-163.	2.2	27
188	Confined Surface Plasmons in Gold Photonic Nanocavities. Advanced Materials, 2001, 13, 1368-1370.	11.1	50
189	Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates. Journal of Materials Chemistry, 2001, 11, 849-853.	6.7	174
190	The Electrochemical Deposition of Nanostructured Cobalt Films from Lyotropic Liquid Crystalline Media. Journal of the Electrochemical Society, 2001, 148, C119.	1.3	101
191	Silicon Planar Microcalorimeter Employing Nanostructured Films. , 2001, , 820-823.		4
192	Nanostructured materials for batteries. Macromolecular Symposia, 2000, 156, 179-186.	0.4	25
193	Electrodeposition and properties of nanostructured platinum films studied by quartz crystal impedance measurements at 10 MHz. Electrochimica Acta, 2000, 45, 3711-3724.	2.6	73
194	Poly(aniline)–poly(acrylate) composite films as modified electrodes for the oxidation of NADH. Physical Chemistry Chemical Physics, 2000, 2, 2599-2606.	1.3	105
195	Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chemical Communications, 2000, , 1671-1672.	2.2	211
196	In situ characterization of phospholipid coated electrodes. Journal of Materials Chemistry, 2000, 10, 149-156.	6.7	12
197	A study of the preconcentration and stripping voltammetry of Pb(ii) at carbon electrodes. Analyst, The, 2000, 125, 1135-1138.	1.7	24
198	An Instrument for Simultaneous EQCM Impedance and SECM Measurements. Analytical Chemistry, 2000, 72, 349-356.	3.2	39

#	Article	IF	CITATIONS
199	Covalent Attachment of Osmium Complexes to Glucose Oxidase and the Application of the Resulting Modified Enzyme in an Enzyme Switch Responsive to Glucose. Analytical Chemistry, 2000, 72, 502-509.	3.2	92
200	Molecular Self-Assembly on Surfaces of Organic Conducting Salts:Â Epitaxial Monolayer Films of Naphthalene on the (001) Surface of (TMTSF)2PF6. Journal of Physical Chemistry B, 2000, 104, 7394-7402.	1.2	1
201	Microelectrochemical enzyme transistors. Chemical Communications, 2000, , 105-112.	2.2	61
202	Approaches to the Integration of Electrochemistry and Biotechnology II. The Horseradish Peroxidase Catalyzed Oxidation of 2,4,6â€∢rimethylphenol by Electrogenerated Hydrogen Peroxide. Journal of the Electrochemical Society, 1999, 146, 1088-1092.	1.3	11
203	Effect of micro-electrode geometry on response of thin-film poly(pyrrole) and poly(aniline) chemoresistive sensors. Sensors and Actuators B: Chemical, 1999, 57, 17-27.	4.0	25
204	Fuzzy ARTMAP based electronic nose data analysis. Sensors and Actuators B: Chemical, 1999, 61, 183-190.	4.0	94
205	Platinum Microelectrodes with Unique High Surface Areas. Langmuir, 1999, 15, 7411-7415.	1.6	136
206	Nanostructured Platinum (HI-ePt) Films:Â Effects of Electrodeposition Conditions on Film Properties. Chemistry of Materials, 1999, 11, 3602-3609.	3.2	141
207	The Application of Approximate Analytical Models in the Development of Modified Electrodes for NADH Oxidation. Comprehensive Chemical Kinetics, 1999, 37, 35-89.	2.3	3
208	Title is missing!. Journal of Applied Electrochemistry, 1998, 28, 455-459.	1.5	5
209	Synthesis and electrochemical properties of tetrathiafulvalene derived amino acids and peptides. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1467-1474.	0.9	22
210	Measurement of low glucose concentrations using a microelectrochemical enzyme transistor. Analyst, The, 1998, 123, 387-392.	1.7	42
211	An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film. Analytical Chemistry, 1998, 70, 3685-3694.	3.2	147
212	Lyotropic Liquid Crystalline Properties of Nonionic Surfactant/H2O/Hexachloroplatinic Acid Ternary Mixtures Used for the Production of Nanostructured Platinum. Langmuir, 1998, 14, 7340-7342.	1.6	74
213	Integrated Sensor Arrays for the Dynamic Measurement of Food Flavour Release. Measurement and Control, 1997, 30, 273-279.	0.9	6
214	Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discussions, 1997, 107, 141-157.	1.6	85
215	Approaches to the Integration of Electrochemistry and Biotechnology: I. Enzymeâ€Modified Reticulated Vitreous Carbon Electrodes. Journal of the Electrochemical Society, 1997, 144, 3705-3710.	1.3	38
216	Modification of Glucose Oxidase by the Covalent Attachment of a Tetrathiafulvalene Derivative. Analytical Chemistry, 1997, 69, 734-742.	3.2	63

#	Article	IF	CITATIONS
217	Dissolution Processes at TTFâ^'TCNQ Single-Crystal Electrodes:  A Dynamic in Situ Electrochemical Scanning Tunneling Microscopy Study. Journal of Physical Chemistry B, 1997, 101, 8540-8549.	1.2	12
218	Layer-by-Layer Self-Assembly of Glucose Oxidase with a Poly(allylamine)ferrocene Redox Mediator. Langmuir, 1997, 13, 2708-2716.	1.6	421
219	Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1951-1960.	1.7	143
220	Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases. Science, 1997, 278, 838-840.	6.0	937
221	A microelectrochemical switch responsive to NADH. Chemical Communications, 1996, , 359.	2.2	27
222	A study on the direct electrochemical communication between horseradish peroxidase and a poly(aniline) modified electrode. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3123.	1.7	30
223	Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)–poly(styrenesulfonate) composite films. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4137-4143.	1.7	65
224	Metal complexes of a tetrathiafulvalene 4,5-dithiolate. Synthesis, characterisation and properties of dianionic and neutral mercury complexes. Journal of the Chemical Society Dalton Transactions, 1996, , 823.	1.1	49
225	Performance definition and standardization of electronic noses. Sensors and Actuators B: Chemical, 1996, 33, 60-67.	4.0	69
226	Redox polymers for electrocatalytic oxidation of NADH - Cationic styrene and ethylenimine polymers. Electroanalysis, 1996, 8, 575-581.	1.5	33
227	Applications of Electroactive Polymers in Bioelectrochemistry and Bioelectronics. , 1996, , 233-267.		8
228	Application of conducting polymer technology in microsystems. , 1996, , 57-66.		1
229	Redox polymers for electrocatalytic oxidation of NADH - A random block methyl-siloxane polymer containing meldola blue. Electroanalysis, 1995, 7, 935-940.	1.5	46
230	Application of conducting polymer technology in microsystems. Sensors and Actuators A: Physical, 1995, 51, 57-66.	2.0	85
231	Application of conducting polymer technology in microsystems. , 1995, 51, 57-57.		5
232	Electropolymerized films for low friction microactuator bearings. Sensors and Actuators A: Physical, 1994, 41, 300-303.	2.0	3
233	A brief history of electronic noses. Sensors and Actuators B: Chemical, 1994, 18, 210-211.	4.0	773
234	A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers. Sensors and Actuators B: Chemical, 1994, 18, 240-243.	4.0	78

#	Article	IF	CITATIONS
235	Conducting-polymer-based electrochemical sensors: theoretical analysis of the transient current response. Journal of Electroanalytical Chemistry, 1994, 365, 29-34.	1.9	20
236	Electronic properties of metal-poly(pyrrole) junctionsâ€. International Journal of Electronics, 1994, 77, 173-184.	0.9	8
237	Electrochemistry of poly(3-thiopheneacetic acid) in aqueous solution: evidence for an intramolecular chemical reaction. Journal of Materials Chemistry, 1994, 4, 1805.	6.7	25
238	A Microelectrochemical Enzyme Transistor Responsive to Glucose. Analytical Chemistry, 1994, 66, 1552-1559.	3.2	108
239	Electrochemical immobilization of enzymes. Part VI. Microelectrodes for the detection of L-lactate based on flavocytochrome b 2 immobilized in a poly(phenol) film. Analyst, The, 1994, 119, 175.	1.7	34
240	and rotating ring-disc electrodes. Electrochimica Acta, 1993, 38, 2515-2523.	2.6	40
241	Heterogeneous redox catalysis at hydrated oxide layers. Journal of Electroanalytical Chemistry, 1993, 351, 245-258.	1.9	46
242	Electronic nose for monitoring the flavour of beers. Analyst, The, 1993, 118, 371.	1.7	210
243	Theoretical analysis for a second-order ECE process at a rotating-disc electrode. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 213.	1.7	10
244	Enzyme switch responsive to glucose. Analytical Chemistry, 1993, 65, 1118-1119.	3.2	87
245	Electrochemical immobilisation of enzymes. Part 4.—Co-immobilisation of glucose oxidase and ferro/ferricyanide in poly(N-methylpyrrole) films. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2677-2683.	1.7	62
246	Electrochemically polymerised films of 5-carboxyinodele. Preparation and properties. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2685.	1.7	36
247	Amperometric chemical sensors using microheterogeneous systems. Analyst, The, 1992, 117, 1271.	1.7	41
248	Electrochemical immobilization of enzymes. 3. Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols. Analytical Chemistry, 1992, 64, 138-142.	3.2	167
249	Amperometric enzyme electrodes. Journal of Electroanalytical Chemistry, 1992, 323, 77-102.	1.9	46
250	Pattern Recognition in Odour Sensing. , 1992, , 161-179.		23
251	Odour Sensors for an Electronic Nose. , 1992, , 31-51.		21
252	Enzyme electrode studies of glucose oxidase modified with a redox mediator. Talanta, 1991, 38, 57-63.	2.9	78

#	Article	IF	CITATIONS
253	Reinvestigation of the nickel phosphine catalysed electrochemical synthesis of poly(2,5-pyridine). X-Ray crystal structures of [Ni2Br2(µ-5-BrC5H3N-C2,N)2(PPh3)2] and [PtBr(5-BrC5H3N-C2)(PPh3)2]. Journal of Materials Chemistry, 1991, 1, 569-576.	6.7	11
254	Conducting polymer based electrochemical sensors: theoretical analysis of current response under steady state conditions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 304, 1-6.	0.3	10
255	Microheterogeneous catalysis in modified electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 1-22.	0.3	12
256	Potential applications of electropolymerized thin organic films in nanotechnology. Nanotechnology, 1991, 2, 19-32.	1.3	26
257	Nasal nets catch the scent. Physics World, 1990, 3, 19-20.	0.0	0
258	Modified electrode surface in amperometric biosensors. Medical and Biological Engineering and Computing, 1990, 28, B10-B17.	1.6	16
259	Conducting polymer films. Attachment of pyrrole groups to open-chain nitrogen-containing ligands and related species. Electrochimica Acta, 1990, 35, 1273-1278.	2.6	19
260	Conducting polymer films. Attachment of pyrrole groups to aza-macrocycles and attempted electrochemical polymerisation of the resulting monomers. Electrochimica Acta, 1990, 35, 1051-1055.	2.6	17
261	Modification of glucose oxidase by tetrathiafulvalene. Journal of the Chemical Society Chemical Communications, 1990, , 1135.	2.0	18
262	The Design of an Artificial Olfactory System. , 1990, , 131-173.		18
263	Conducting polymer gas sensors Part III: Results for four different polymers and five different vapours. Sensors and Actuators, 1989, 20, 287-292.	1.8	234
264	Conducting polymer gas sensors part I: fabrication and characterization. Sensors and Actuators, 1989, 19, 125-140.	1.8	184
265	Conducting polymer gas sensors part II: response of polypyrrole to methanol vapour. Sensors and Actuators, 1989, 19, 141-150.	1.8	150
266	The electrochemistry of cytochrome c at a conducting polymer electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 261, 471-475.	0.3	54
267	How not to defeat terrorism. Nature, 1989, 342, 848-848.	13.7	2
268	Transport and kinetics in multicomponent chemically modified electrodes. Faraday Discussions of the Chemical Society, 1989, 88, 139.	2.2	27
269	Small-volume electrochemical cell designed for rotating disk studies in bioelectrochemistry. Analytical Chemistry, 1989, 61, 2803-2805.	3.2	17
270	Microanalysis of polymers using a windowless energy-dispersive X-ray detector. Journal of Polymer Science Part A, 1988, 26, 201-206.	2.5	2

#	Article	IF	CITATIONS
271	Modulated Light Studies of the Electrochemistry of Semiconductors: Theory and Experiment. Journal of the Electrochemical Society, 1987, 134, 2486-2491.	1.3	26
272	Covalent binding of electron relays to glucose oxidase. Journal of the Chemical Society Chemical Communications, 1987, , 1603.	2.0	82
273	Amperometric enzyme electrodes. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1987, 316, 107-119.	2.4	77
274	Strategies for the development of amperometric enzyme electrodes. Biosensors, 1987, 3, 359-379.	2.0	163
275	Amperometric enzyme electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 218, 119-126.	0.3	64
276	Amperometric enzyme electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 218, 127-134.	0.3	50
277	Electrochemical synthesis and study of polydiphenylamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 220, 287-294.	0.3	52
278	Electrochemical sensors: theory and experiment. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 1033.	1.0	81
279	Identification and properties of bimetallic intermediates in the hydrolysis of titanium chloro carboxylate species. Crystal structure of Ti2(µ-O)(µ-O2CPh)2Cl4·2L (L = EtOAc or tetrahydrofuran). Journal of the Chemical Society Chemical Communications, 1986, , 614-615.	2.0	10
280	An amperometric enzyme electrode for monitoring brain glucose in the freely moving rat. Neuroscience Letters, 1986, 72, 283-288.	1.0	73
281	Transport and kinetics at microheterogeneous electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 182, 7-23.	0.3	12
282	Amperometric enzyme electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 194, 223-235.	0.3	162
283	Amperometric enzyme electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 194, 211-222.	0.3	110
284	The rotating optical disc–ring electrode. Part 1.—Collection of a stable photoproduct. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 2647.	1.0	4
285	A general model for dispersed kinetics in heterogeneous systems. Journal of the American Chemical Society, 1985, 107, 1854-1858.	6.6	254
286	The Electrochemistry of Colloidal Semiconductor Particles: Experiments on and. Journal of the Electrochemical Society, 1984, 131, 2896-2900.	1.3	27
287	An organic conductor electrode for the oxidation of NADH. Journal of the Chemical Society Chemical Communications, 1984, , 234.	2.0	79
288	The Electrochemistry of Colloidal Semiconductor Particles: Theory. Journal of the Electrochemical Society, 1984, 131, 2892-2896.	1.3	19

#	Article	IF	CITATIONS
289	The Transport and Kinetics of Photogenerated Carriers in Colloidal Semiconductor Electrode Particles. Journal of the Electrochemical Society, 1984, 131, 315-325.	1.3	120
290	The Recombination of Photogenerated Minority Carriers in the Depletion Layer of Semiconductor Electrodes. Journal of the Electrochemical Society, 1983, 130, 1699-1706.	1.3	21
291	The Photoelectrochemical Kinetics of pâ€Type GaP. Journal of the Electrochemical Society, 1982, 129, 2254-2261.	1.3	41
292	Closure to "Discussion of †The Transport and Kinetics of Minority Carriers in Illuminated Semiconductor Electrodes' [W. J. Albery, P. N. Bartlett, A. Hamnett, and M. P. Dareâ€Edwards (pp.) Tj ETQq0	0 0.8gBT /0	Dværlock 10 T
293	Transport and kinetics at microheterogeneous electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 139, 57-68.	0.3	9
294	Transport and kinetics at microheterogeneous electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 131, 137-144.	0.3	20
295	Transport and kinetics at microheterogeneous electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 131, 145-152.	0.3	14
296	Photogalvanic cells. Part 14. The synthesis and characterization of disulphonated thionines. Journal of the Chemical Society Perkin Transactions II, 1981, , 794.	0.9	12
297	The Transport and Kinetics of Minority Carriers in Illuminated Semiconductor Electrodes. Journal of the Electrochemical Society, 1981, 128, 1492-1501.	1.3	79
298	New thiazine dyes for photogalvanic cells. Faraday Discussions of the Chemical Society, 1980, 70, 341.	2.2	11
299	Bioelectrosynthesis–Electrolysis and Electrodialysis. , 0, , 327-358.		0
300	Bioenergetics and Biological Electron Transport. , 0, , 1-37.		2
301	Biofuel Cells. , 0, , 359-375.		2
302	Electrochemical Immunoassays. , 0, , 377-410.		11
303	Electrochemical DNA Assays. , 0, , 411-442.		5
304	In Vivo Applications: Clucose Monitoring, Fuel Cells. , 0, , 443-466.		1
305	NAD(P)-Based Biosensors. , 0, , 157-198.		20

#	Article	IF	CITATIONS
307	Whole-Cell Biosensors. , 0, , 249-266.		2