
James Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5889376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. Journal of Immunology, 2021, 207, 1627-1640.	0.8	17
2	A Cobalt Schiff-Base Complex as a Putative Therapeutic for Azide Poisoning. Chemical Research in Toxicology, 2020, 33, 333-342.	3.3	7
3	Antimicrobial Synergism Toward Pseudomonas aeruginosa by Gallium(III) and Inorganic Nitrite. Frontiers in Microbiology, 2020, 11, 2113.	3.5	7
4	A Comparison of Potential Azide Antidotes in a Mouse Model. Chemical Research in Toxicology, 2020, 33, 594-603.	3.3	8
5	Reaction Kinetics of Cyanide Binding to a Cobalt Schiff-Base Macrocycle Relevant to Its Mechanism of Antidotal Action. Chemical Research in Toxicology, 2019, 32, 1630-1637.	3.3	4
6	Antidotal Action of Some Gold(I) Complexes toward Phosphine Toxicity. Chemical Research in Toxicology, 2019, 32, 1310-1316.	3.3	4
7	Assessing modulators of cytochrome c oxidase activity in Galleria mellonella larvae. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 219, 77-86.	2.6	4
8	A Comparison of the Cyanide-Scavenging Capabilities of Some Cobalt-Containing Complexes in Mice. Chemical Research in Toxicology, 2018, 31, 259-268.	3.3	8
9	Sulfide Toxicity and Its Modulation by Nitric Oxide in Bovine Pulmonary Artery Endothelial Cells. Chemical Research in Toxicology, 2017, 30, 2100-2109.	3.3	5
10	Environmental toxicology of hydrogen sulfide. Nitric Oxide - Biology and Chemistry, 2017, 71, 1-13.	2.7	192
11	Relative Propensities of Cytochrome <i>c</i> Oxidase and Cobalt Corrins for Reaction with Cyanide and Oxygen: Implications for Amelioration of Cyanide Toxicity. Chemical Research in Toxicology, 2017, 30, 2197-2208.	3.3	9
12	Cyanide Scavenging by a Cobalt Schiff-Base Macrocycle: A Cost-Effective Alternative to Corrinoids. Chemical Research in Toxicology, 2016, 29, 1011-1019.	3.3	12
13	Effect of Ascorbate on the Cyanide-Scavenging Capability of Cobalt(III) <i>meso</i> -Tetra(4- <i>N</i> -methylpyridyl)porphine Pentaiodide: Deactivation by Reduction?. Chemical Research in Toxicology, 2016, 29, 270-278.	3.3	7
14	Antagonism of Acute Sulfide Poisoning in Mice by Nitrite Anion without Methemoglobinemia. Chemical Research in Toxicology, 2015, 28, 1398-1408.	3.3	21
15	Structural Re-arrangement and Peroxidase Activation of Cytochrome c by Anionic Analogues of Vitamin E, Tocopherol Succinate and Tocopherol Phosphate. Journal of Biological Chemistry, 2014, 289, 32488-32498.	3.4	15
16	Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids. Free Radical Biology and Medicine, 2014, 71, 221-230.	2.9	40
17	Oxygen binding to partially nitrosylated hemoglobin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1894-1900.	2.3	14
18	Comparison of the Relative Propensities of Isoamyl Nitrite and Sodium Nitrite to Ameliorate Acute Cyanide Poisoning in Mice and a Novel Antidotal Effect Arising from Anesthetics. Chemical Research in Toxicology, 2013, 26, 828-836.	3.3	23

James Peterson

#	Article	IF	CITATIONS
19	Metallothionein-induced zinc partitioning exacerbates hyperoxic acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L350-L360.	2.9	14
20	Metalloporphyrin CollITMPyP Ameliorates Acute, Sublethal Cyanide Toxicity in Mice. Chemical Research in Toxicology, 2012, 25, 2678-2686.	3.3	11
21	Radiation Protection by MnSOD-Plasmid Liposome Gene Therapy. , 2012, , 387-406.		1
22	l-Arginine is a Radioprotector for Hematopoietic Progenitor Cells. Radiation Research, 2011, 177, 792.	1.5	6
23	Acute, Sublethal Cyanide Poisoning in Mice Is Ameliorated by Nitrite Alone: Complications Arising from Concomitant Administration of Nitrite and Thiosulfate as an Antidotal Combination. Chemical Research in Toxicology, 2011, 24, 1104-1112.	3.3	36
24	Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2147-2155.	2.6	64
25	A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nature Communications, 2011, 2, 497.	12.8	91
26	Covalent Modifications of Hemoglobin by Nitrite Anion: Formation Kinetics and Properties of Nitrihemoglobin. Chemical Research in Toxicology, 2010, 23, 1786-1795.	3.3	14
27	Manganese Superoxide Dismutase is not Protective in Bovine Pulmonary Artery Endothelial Cells at Systemic Oxygen Levels. Radiation Research, 2010, 174, 679-690.	1.5	3
28	The resistance of electron-transport chain Fe–S clusters to oxidative damage during the reaction of peroxynitrite with mitochondrial complex II and rat-heart pericardium. Nitric Oxide - Biology and Chemistry, 2009, 20, 135-142.	2.7	23
29	Mitochondrial Targeting of a Catalase Transgene Product by Plasmid Liposomes Increases Radioresistance <i>In Vitro</i> and <i>In Vivo</i> . Radiation Research, 2009, 171, 588-595.	1.5	53
30	Antagonism of Nitric Oxide Toward the Inhibition of Cytochrome <i>c</i> Oxidase by Carbon Monoxide and Cyanide. Chemical Research in Toxicology, 2008, 21, 2073-2081.	3.3	29
31	Cardiolipin Switch in Mitochondria:Â Shutting off the Reduction of Cytochromecand Turning on the Peroxidase Activityâ€. Biochemistry, 2007, 46, 3423-3434.	2.5	189
32	Peroxidase Activity and Structural Transitions of Cytochrome c Bound to Cardiolipin-Containing Membranes. Biochemistry, 2006, 45, 4998-5009.	2.5	346
33	Glutathione depletion renders rat hepatocytes sensitive to nitric oxide donor-mediated toxicity. Hepatology, 2005, 42, 598-607.	7.3	27
34	Nitrosative stress results in irreversible inhibition of purified mitochondrial complexes I and III without modification of cofactors. Nitric Oxide - Biology and Chemistry, 2005, 13, 254-263.	2.7	44
35	A mitochondrial role for catabolism of nitric oxide in cardiomyocytes not involving oxymyoglobin. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H55-H58.	3.2	7
36	Function and regulation of mitochondrially produced nitric oxide in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H11-H12.	3.2	8

James Peterson

#	Article	IF	CITATIONS
37	Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H13-H21.	3.2	62
38	Reversal of Cyanide Inhibition of Cytochrome c Oxidase by the Auxiliary Substrate Nitric Oxide. Journal of Biological Chemistry, 2003, 278, 52139-52145.	3.4	80
39	The case of the missing NO- hemoglobin: Spectral changes suggestive of heme redox reactions reflect changes in NO- heme geometry. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12087-12092.	7.1	39
40	The Catabolic Fate of Nitric Oxide. Journal of Biological Chemistry, 2002, 277, 13556-13562.	3.4	92
41	Peer Reviewed: Resolving Molecular Electronic Spectra Using Magnetic Linear Dichroism Analytical Chemistry, 2002, 74, 527 A-533 A.	6.5	6
42	Visible region MCD and MLD spectra of nitrosylferrohemoglobin and oxyhemoglobin. Biochemical and Biophysical Research Communications, 2002, 297, 220-223.	2.1	2
43	Resolution of overlapping charge-transfer transitions by a combined absorption-MCD–MLD approach. Chemical Physics Letters, 2002, 365, 164-169.	2.6	0
44	Identification of Respiratory Complexes I and III as Mitochondrial Sites of Damage Following Exposure to Ionizing Radiation and Nitric Oxide. Nitric Oxide - Biology and Chemistry, 2001, 5, 128-136.	2.7	73
45	Spectroscopic and magnetochemical studies on the active site copper complex in galactose oxidase. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 3-15.	1.8	31
46	Mössbauer, EPR, and MCD studies of the C9S and C42S variants of Clostridium pasteurianum rubredoxin and MCD studies of the wild-type protein. Journal of Biological Inorganic Chemistry, 2000, 5, 475-487.	2.6	32
47	The Peroxynitrite Reductase Activity of Cytochrome cOxidase Involves a Two-electron Redox Reaction at the Hemea 3-CuB Site. Journal of Biological Chemistry, 1999, 274, 35763-35767.	3.4	44
48	Internal Electron Transfer between Hemes and Cu(II) Bound at Cysteine β93 Promotes Methemoglobin Reduction by Carbon Monoxide. Journal of Biological Chemistry, 1999, 274, 5499-5507.	3.4	26
49	Development and experimental verification of a theory for high-field, ultralow-temperature magnetic linear dichroism of glasses containing molecular chromophores with spin doublet ground states. Journal of Chemical Physics, 1999, 111, 7512-7518.	3.0	3
50	Visible Region Magnetic Linear Dichroism Spectra of Ferrocytochromecand Deoxymyoglobin:Â Demonstration of a New Tool for the Study of Metalloproteins. Journal of the American Chemical Society, 1999, 121, 5972-5980.	13.7	6
51	Observation and Interpretation of Temperature-Dependent Valence Delocalization in the [2Feâ^2S]+Cluster of a Ferredoxin fromClostridium pasteurianum. Journal of the American Chemical Society, 1999, 121, 3704-3714.	13.7	57
52	Magnetic Circular Dichroism Study of the All-Ferrous [4Fe-4S] Cluster of the Fe-Protein ofAzotobacter vinelandiiNitrogenase. Journal of the American Chemical Society, 1998, 120, 9704-9705.	13.7	25
53	The Alkaline Transition of Bis(N-acetylated) Heme Undecapeptide⊥. Inorganic Chemistry, 1998, 37, 4654-4661.	4.0	7
54	Spectral and Cyanide Binding Properties of the Cytochrome aa3(600 nm) Complex fromBacillus subtilis. Archives of Biochemistry and Biophysics, 1998, 350, 273-282.	3.0	5

JAMES PETERSON

#	Article	IF	CITATIONS
55	Theory for magnetic linear dichroism of electronic transitions between twofold-degenerate molecular spin levels. Journal of Chemical Physics, 1998, 109, 942-950.	3.0	2
56	Characterization of N-Acetylated Heme Undecapeptide and Some of Its Derivatives in Aqueous Media:Â Monomeric Model Systems for Hemoproteins§. Inorganic Chemistry, 1996, 35, 6885-6891.	4.0	29
57	Manganese and "pinnaglobin―in Pinna nobilis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 113, 525-532.	1.6	1
58	A carbon monoxide irreducible form of cytochrome c oxidase and other unusual properties of the "monomeric―shark enzyme. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 114, 345-352.	1.6	7
59	Monomeric ferric heme peptide derivatives: Model systems for hemoproteins. Journal of Inorganic Biochemistry, 1995, 60, 267-276.	3.5	14
60	The site of the redox-linked proton pump in eukaryotic cytochromecoxidases. FEBS Letters, 1995, 370, 53-58.	2.8	2
61	Identification of the axial heme ligands of cytochromeb556in succinate: Ubiquinone oxidoreductase fromEscherichia coli. FEBS Letters, 1994, 355, 155-156.	2.8	33
62	The use of near-infrared charge-transfer transitions of low-spin ferric chlorins in axial ligand assignment. FEBS Letters, 1994, 356, 159-161.	2.8	6
63	Identification of axial ligands of cytochromec552fromNitrosomonas europaea. FEBS Letters, 1994, 342, 217-220.	2.8	23
64	Characterization of heme c peptides by mass spectrometry. Journal of Inorganic Biochemistry, 1993, 52, 201-207.	3.5	13
65	Magnetization of fast and slow oxidized cytochrome c oxidase. Biochemistry, 1993, 32, 7855-7860.	2.5	47
66	Saturation magnetization of ureases from Klebsiella aerogenes and jack bean: no evidence for exchange coupling between the two active site nickel ions in the native enzymes. Inorganic Chemistry, 1993, 32, 634-638.	4.0	39
67	THE ELECTROCHROMIC BEHAVIOUR OF LANTHANIDE BISPHTHALOCYANINES: THE ACID-BASE NATURE OF THE MECHANISM. Journal of Coordination Chemistry, 1993, 28, 23-31.	2.2	12
68	THE ELECTROCHROMIC BEHAVIOUR OF LANTHANIDE BISPHTHALOCYANINES: THE ANOMALOUS NATURE OF THE GREEN LUTETIUM SPECIES. Journal of Coordination Chemistry, 1993, 30, 357-366.	2.2	16
69	Identification of heme macrocycle type by near-infrared magnetic circular dichroism spectroscopy at cryogenic temperatures. FEBS Letters, 1992, 309, 157-160.	2.8	11
70	Magnetization of manganese superoxide dismutase from Thermus thermophilus. BBA - Proteins and Proteomics, 1991, 1079, 161-168.	2.1	10
71	Magnetization of the sulfite and nitrite complexes of oxidized sulfite and nitrite reductases: EPR silent spin S = 1/2 states. Biochemistry, 1988, 27, 2126-2132.	2.5	34
72	The reduction of haem peptides by dithionite. A kinetic investigation. Inorganica Chimica Acta, 1987, 135, 101-107.	2.4	8

JAMES PETERSON

#	Article	IF	Citations
73	Photolytic studies on cytochrome <i>c</i> peroxidase from <i>Pseudomonas aeruginosa</i> . Biochemical Society Transactions, 1985, 13, 625-626.	3.4	2
74	The Structure of the Cytochrome a3-cuB Site of Mammalian Cytochrome c Oxidase as probed by MCD and EPR Spectroscopy. Journal of Inorganic Biochemistry, 1985, 23, 187-197.	3.5	40
75	A spectroscopic investigation of the structure and redox properties of Escherichia coli cytochrome b-562. BBA - Proteins and Proteomics, 1985, 829, 83-96.	2.1	76
76	Magnetic circular dichroism spectra of soybean leghaemoglocin a at room temperature and 4.2 K. BBA - Proteins and Proteomics, 1983, 742, 637-647.	2.1	30
77	A comparative study of the low-temperature magnetic circular dichroism spectra of horse heart metmyoglobin and bovine liver catalase derivatives. BBA - Proteins and Proteomics, 1983, 742, 648-658.	2.1	35
78	On the preparation and mössbauer properties of some heme peptides of cytochrome c. Journal of Inorganic Biochemistry, 1983, 19, 165-178.	3.5	39
79	A study of the electron transfer properties of the heme undecapeptide from cytochrome c by 1H nmr spectroscopy. Journal of Inorganic Biochemistry, 1981, 15, 11-25.	3.5	27
80	The purification and Mössbauer parameters of the haem undecapeptide of cytochrome c. Journal of Inorganic Biochemistry, 1980, 13, 75-82.	3.5	37