
Yihao Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5888883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Personalized Acoustic Interface for Wearable Human–Machine Interaction. Advanced Functional Materials, 2022, 32, 2109430.	14.9	69
2	MXene‧ponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing. Small Methods, 2022, 6, e2101051.	8.6	61
3	Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS Applied Materials & Interfaces, 2022, 14, 7301-7310.	8.0	86
4	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	38.1	145
5	MXeneâ€Sponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing (Small Methods 2/2022). Small Methods, 2022, 6, .	8.6	4
6	A Deepâ€Learningâ€Assisted Onâ€Mask Sensor Network for Adaptive Respiratory Monitoring. Advanced Materials, 2022, 34, e2200252.	21.0	72
7	Smart textiles for personalized healthcare. Nature Electronics, 2022, 5, 142-156.	26.0	307
8	Giant Magnetoelastic Effect Enabled Stretchable Sensor for Self-Powered Biomonitoring. ACS Nano, 2022, 16, 6013-6022.	14.6	59
9	Porous Cu ₂ BaSn(S,Se) ₄ Film as a Photocathode Using Non-Toxic Solvent and a Ball-Milling Approach. ACS Applied Energy Materials, 2021, 4, 81-87.	5.1	7
10	Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Advanced Functional Materials, 2021, 31, 2010962.	14.9	169
11	Piezoelectric Textiles: Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170136.	14.9	6
12	Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS Nano, 2021, 15, 13178-13187.	14.6	128
13	Ambulatory Cardiovascular Monitoring Via a Machineâ€Learningâ€Assisted Textile Triboelectric Sensor. Advanced Materials, 2021, 33, e2104178.	21.0	167
14	Giant magnetoelastic effect in soft systems for bioelectronics. Nature Materials, 2021, 20, 1670-1676.	27.5	175
15	A Perovskiteâ€Based Photodetector with Enhanced Light Absorption, Heat Dissipation, and Humidity Stability. Advanced Photonics Research, 2021, 2, 2100123.	3.6	5
16	Wearable Ultrahigh Current Power Source Based on Giant Magnetoelastic Effect in Soft Elastomer System. ACS Nano, 2021, 15, 20582-20589.	14.6	43
17	Soft fibers with magnetoelasticity for wearable electronics. Nature Communications, 2021, 12, 6755.	12.8	150
18	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	10.3	145

Үінао Zhou

#	Article	IF	CITATIONS
19	Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 2773-2782.	8.0	17
20	Low-Cost and Nature-Friendly Hierarchical Porous Carbon for Enhanced Capacitive Electrochemical Energy Storage. ACS Applied Energy Materials, 2020, 3, 7246-7250.	5.1	22
21	Photo-Rechargeable Fabrics as Sustainable and Robust Power Sources for Wearable Bioelectronics. Matter, 2020, 2, 1260-1269.	10.0	204
22	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	26.0	513
23	Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano, 2020, 14, 9050-9058.	14.6	88
24	Ti ₃ C ₂ T _{<i>x</i>} MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano, 2020, 14, 3576-3586.	14.6	277
25	A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter, 2020, 2, 896-907.	10.0	310
26	Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano, 2020, 14, 6067-6075.	14.6	271
27	Promoting Energy Efficiency via a Selfâ€Adaptive Evaporative Cooling Hydrogel. Advanced Materials, 2020, 32, e1907307.	21.0	151
28	Carbon Nanotubes: Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests (Adv. Energy Mater. 22/2019). Advanced Energy Materials, 2019, 9, 1970082.	19.5	4
29	Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests. Advanced Energy Materials, 2019, 9, 1900618.	19.5	74
30	Efficient and Stable Pt/TiO ₂ /CdS/Cu ₂ BaSn(S,Se) ₄ Photocathode for Water Electrolysis Applications. ACS Energy Letters, 2018, 3, 177-183.	17.4	75
31	Recent Advances in Stretchable Supercapacitors Enabled by Lowâ€Dimensional Nanomaterials. Small, 2018, 14, e1803976.	10.0	52
32	Solution-Processed Earth-Abundant Cu ₂ BaSn(S,Se) ₄ Solar Absorber Using a Low-Toxicity Solvent. Chemistry of Materials, 2018, 30, 6116-6123.	6.7	43
33	Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy and Environmental Science, 2017, 10, 2365-2371.	30.8	157
34	Synthesis and Characterization of an Earth-Abundant Cu ₂ BaSn(S,Se) ₄ Chalcogenide for Photoelectrochemical Cell Application. Journal of Physical Chemistry Letters, 2016, 7, 4554-4561.	4.6	54