
Joelle Aubin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588885/publications.pdf Version: 2024-02-01

LOFUE AURIN

#	Article	IF	CITATIONS
1	Determination of mass transfer coefficients in high-pressure CO2-H2O flows in microcapillaries using a colorimetric method. Chemical Engineering Science, 2022, 248, 117161.	3.8	6
2	Design, performance characterization and applications of continuous oscillatory baffled reactors. Chemical Engineering and Processing: Process Intensification, 2022, 180, 108718.	3.6	8
3	Gas-liquid flow characterization and mass transfer study in a microreactor for oligomerization catalyst testing. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108476.	3.6	1
4	Gas-liquid-liquid reactions: Contacting mechanisms and effective process technologies. Catalysis Today, 2020, 346, 46-57.	4.4	6
5	Predicting power consumption in continuous oscillatory baffled reactors. Chemical Engineering Science, 2020, 212, 115310.	3.8	13
6	Determination of mass transfer coefficients in high-pressure two-phase flows in capillaries using Raman spectroscopy. Chemical Engineering Science, 2020, 228, 115960.	3.8	12
7	Mixing performance in continuous oscillatory baffled reactors. Chemical Engineering Science, 2020, 219, 115600.	3.8	13
8	Simulation of micromixing in a T-mixer under laminar flow conditions. Chemical Engineering Science, 2020, 222, 115706.	3.8	24
9	Advances in Mixing Research: 16th European Conference on Mixing. Chemical Engineering and Technology, 2019, 42, 1544-1544.	1.5	2
10	Valorization of waste cooking oil based biodiesel for biolubricant production in a vertical pulsed column: Energy efficient process approach. Energy, 2019, 189, 116266.	8.8	22
11	Estimation of characteristic coagulation time based on Brownian coagulation theory and stability ratio modeling using electrokinetic measurements. Chemical Engineering Journal, 2019, 369, 818-827.	12.7	4
12	Hydrodynamics of CO2-ethanol flow in a microchannel under elevated pressure. Chemical Engineering Science, 2018, 178, 297-311.	3.8	13
13	Hydrodynamics in a stirred tank in the transitional flow regime. Chemical Engineering Research and Design, 2018, 132, 865-880.	5.6	8
14	Optimization of methyl ester production from waste cooking oil in a batch tri-orifice oscillatory baffled reactor. Fuel Processing Technology, 2017, 167, 641-647.	7.2	44
15	Towards the design of an intensified coagulator. Chemical Engineering and Processing: Process Intensification, 2017, 121, 1-14.	3.6	2
16	Aggregation and breakup of acrylic latex particles inside millimetric scale reactors. Chemical Engineering and Processing: Process Intensification, 2017, 113, 65-73.	3.6	11
17	Hydrodynamics and mixing in continuous oscillatory flow reactors—Part I: Effect of baffle geometry. Chemical Engineering and Processing: Process Intensification, 2016, 108, 78-92.	3.6	29
18	Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	22

JOELLE AUBIN

#	Article	IF	CITATIONS
19	Hydrodynamics and mixing in continuous oscillatory flow reactors—Part II: Characterisation methods. Chemical Engineering and Processing: Process Intensification, 2016, 102, 102-116.	3.6	24
20	Reactor Comparison for the Esterification of Fatty Acids from Waste Cooking Oil. Chemical Engineering and Technology, 2015, 38, 2161-2169.	1.5	13
21	On the combined effects of surface tension force calculation and interface advection on spurious currents within Volume of Fluid and Level Set frameworks. Journal of Computational Physics, 2015, 297, 611-636.	3.8	87
22	Intensification of waste cooking oil transformation by transesterification and esterification reactions in oscillatory baffled and microstructured reactors for biodiesel production. Green Processing and Synthesis, 2014, 3, 419-429.	3.4	18
23	Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresource Technology, 2014, 161, 270-279.	9.6	57
24	Mixing and recirculation characteristics of gas–liquid Taylor flow in microreactors. Chemical Engineering Research and Design, 2013, 91, 2225-2234.	5.6	25
25	Intensified processes for FAME production from waste cooking oil: A technological review. Chemical Engineering Journal, 2013, 233, 201-223.	12.7	73
26	Hydrodynamics and Mass Transfer in Gasâ€Liquid Flows in Microreactors. Chemical Engineering and Technology, 2012, 35, 1346-1358.	1.5	147
27	Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels. Chemical Engineering Science, 2012, 68, 640-649.	3.8	104
28	Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels. Microfluidics and Nanofluidics, 2012, 12, 355-369.	2.2	86
29	Measuring the scale of segregation in mixing data. Canadian Journal of Chemical Engineering, 2011, 89, 1122-1138.	1.7	21
30	Current methods for characterising mixing and flow in microchannels. Chemical Engineering Science, 2010, 65, 2065-2093.	3.8	167
31	Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient. Chemical Engineering and Processing: Process Intensification, 2009, 48, 554-559.	3.6	55
32	A new definition of mixing and segregation: Three dimensions of a key process variable. Chemical Engineering Research and Design, 2009, 87, 633-647.	5.6	95
33	Impact of sampling method and scale on the measurement of mixing and the coefficient of variance. AICHE Journal, 2008, 54, 3068-3083.	3.6	25
34	Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD. Chemical Engineering Science, 2006, 61, 2913-2920.	3.8	45
35	Alternate Operating Methods for Improving the Performance of Continuous Stirred Tank Reactors. Chemical Engineering Research and Design, 2006, 84, 569-582.	5.6	33
36	Design of micromixers using CFD modelling. Chemical Engineering Science, 2005, 60, 2503-2516.	3.8	165

JOELLE AUBIN

#	Article	IF	CITATIONS
37	Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science, 2004, 28, 431-445.	2.7	209
38	European Federation of Chemical Engineering Working Party on Mixing. Chemical Engineering Research and Design, 2004, 82, 1575-1579.	5.6	4
39	Gas–Liquid Mass Transfer. Chemical Engineering Research and Design, 2004, 82, 1589-1596.	5.6	33
40	Gas–Liquid Mass Transfer. Chemical Engineering Research and Design, 2004, 82, 1161-1168.	5.6	20
41	PIV measurements of flow in an aerated tank stirred by a down- and an up-pumping axial flow impeller. Experimental Thermal and Fluid Science, 2004, 28, 447-456.	2.7	91
42	Characterization of the Mixing Quality in Micromixers. Chemical Engineering and Technology, 2003, 26, 1262-1270.	1.5	114
43	Casâ^'Liquid Flow Generated by a Pitched-Blade Turbine:Â Particle Image Velocimetry Measurements and Computational Fluid Dynamics Simulations. Industrial & Engineering Chemistry Research, 2003, 42, 5318-5332.	3.7	53
44	Effect of Axial Agitator Configuration (Up-Pumping, Down-Pumping, Reverse Rotation) on Flow Patterns Generated in Stirred Vessels. Chemical Engineering Research and Design, 2001, 79, 845-856.	5.6	103
45	Blending of Newtonian and Shear-Thinning Fluids in a Tank Stirred with a Helical Screw Agitator. Chemical Engineering Research and Design, 2000, 78, 1105-1114.	5.6	31