
Thammarat Aree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5888443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cassane-type diterpenes from roots of Pterolobium macropterum and their anti-inflammatory activity. Phytochemistry, 2022, 196, 113074.	1.4	5
2	Inclusion Scenarios and Conformational Flexibility of the SSRI Paroxetine as Perceived from Polymorphism of β-Cyclodextrin–Paroxetine Complex. Pharmaceuticals, 2022, 15, 98.	1.7	4
3	α-Glucosidase Inhibitors from the Stems of <i>Knema globularia</i> . Journal of Natural Products, 2022, 85, 776-786.	1.5	16
4	Low-frequency lattice vibrations from atomic displacement parameters of α-FOX-7, a high energy density material. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 376-384.	0.5	2
5	Two new rearranged clerodane diterpenes from Thai Tinospora baenzigeri. Journal of Natural Medicines, 2021, 75, 201-206.	1.1	1
6	β-Cyclodextrin Inclusion Complexes with Catechol-Containing Antioxidants Protocatechuic Aldehyde and Protocatechuic Acid—An Atomistic Perspective on Structural and Thermodynamic Stabilities. Molecules, 2021, 26, 3574.	1.7	9
7	Picrotoxane sesquiterpene and α-pyrone derivative from Dendrobium signatum and their free radical scavenging potency. Journal of Natural Medicines, 2021, 75, 967-974.	1.1	3
8	Distinctive Supramolecular Features of β-Cyclodextrin Inclusion Complexes with Antidepressants Protriptyline and Maprotiline: A Comprehensive Structural Investigation. Pharmaceuticals, 2021, 14, 812.	1.7	9
9	Advancing insights on β-cyclodextrin inclusion complexes with SSRIs through lens of X-ray diffraction and DFT calculation. International Journal of Pharmaceutics, 2021, 609, 121113.	2.6	6
10	β-Cyclodextrin encapsulation of nortriptyline HCl and amitriptyline HCl: Molecular insights from single-crystal X-ray diffraction and DFT calculation. International Journal of Pharmaceutics, 2020, 575, 118899.	2.6	18
11	Tetrahydroxanthone–chromanone heterodimers from lichen Usnea aciculifera and their cytotoxic activity against human cancer cell lines. Fìtoterapìâ, 2020, 147, 104732.	1.1	11
12	Diterpenoids from the aerial parts of Euphorbia antiquorum and their efficacy on nitric oxide inhibition. Phytochemistry, 2020, 180, 112523.	1.4	10
13	β-Cyclodextrin Inclusion Complexation With Tricyclic Antidepressants Desipramine and Imipramine: A Structural Chemistry Perspective. Journal of Pharmaceutical Sciences, 2020, 109, 3086-3094.	1.6	12
14	Supramolecular Complexes of β-Cyclodextrin with Clomipramine and Doxepin: Effect of the Ring Substituent and Component of Drugs on Their Inclusion Topologies and Structural Flexibilities. Pharmaceuticals, 2020, 13, 278.	1.7	12
15	Functionalization at C2, C3, and C4 of quinolines: Discovery of water-soluble betaine dyes of C3 quinolinium derivatives with solvatochromic and pH-sensitive properties. Dyes and Pigments, 2020, 178, 108341.	2.0	5
16	Pterolobirins A and B, Oxygen-Bridged Cassane Diterpenoid Dimers from the Fruits of <i>Pterolobium macropterum</i> . Journal of Natural Products, 2020, 83, 2241-2245.	1.5	7
17	Picrorhizones A–H, Polyprenylated Benzoylphloroglucinols from the Stem Bark of <i>Garcinia picrorhiza</i> . Journal of Natural Products, 2020, 83, 2102-2111.	1.5	10
18	Dimeric tetrahydroxanthones from the lichen Usnea aciculifera. Fìtoterapìâ, 2019, 137, 104194.	1.1	11

#	Article	IF	CITATIONS
19	Understanding structures and thermodynamics of β-cyclodextrin encapsulation of chlorogenic, caffeic and quinic acids: Implications for enriching antioxidant capacity and masking bitterness in coffee. Food Chemistry, 2019, 293, 550-560.	4.2	53
20	Pterocarpans and Isoflavones from the Heartwood of Pterocarpus indicus. Chemistry of Natural Compounds, 2019, 55, 121-123.	0.2	2
21	Naphthoquinones From Cultured Mycobiont of Marcelaria cumingii (Mont.) and Their Cytotoxicity. Natural Product Communications, 2019, 14, 1934578X1988438.	0.2	4
22	A sesquiterpenoid tropolone and 1,2,3,4-tetrahydronaphthalene derivatives from Olax imbricata roots. Fìtoterapìâ, 2019, 132, 1-6.	1.1	8
23	Inclusion complex of β-cyclodextrin with coffee chlorogenic acid: new insights from a combined crystallographic and theoretical study. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 15-21.	0.2	7
24	Crystal structures, spectroscopic characterization, and Hirshfeld surface analyses of three constrained cyclam compounds with perchlorate counteranions. Journal of Molecular Structure, 2018, 1163, 86-93.	1.8	18
25	Synthesis, spectroscopic characterization, single crystal X-ray analysis and DFT calculation of isomeric Cu(MR) 2 (β[γ-pic) 2 complexes: First transition metal complexes of methyl red. Journal of Molecular Structure, 2018, 1166, 388-396.	1.8	7
26	Aminoquinolineâ€Salicylaldimine Dyads as Highly Selective Turnâ€On Fluorescent Sensors for Zinc (II) Ions. ChemistrySelect, 2018, 3, 3495-3499.	0.7	12
27	β-Cyclodextrin encapsulation elevates antioxidant capacity of tea: A closing chapter on non-epicatechins, atomistic insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydrate Polymers, 2018, 194, 24-33.	5.1	25
28	Erythrosaponins A–J, triterpene saponins from the roots and stem bark of Gardenia erythroclada. Phytochemistry, 2018, 152, 36-44.	1.4	10
29	Hybrid inorganic-organic complexes: Synthesis, spectroscopic characterization, single crystal X-ray structure determination and antimicrobial activities of three copper(II)-diethylenetriamine-p-nitrobenzoate complexes. Inorganica Chimica Acta, 2018, 469, 288-297.	1.2	17
30	Synthesis, characterization and single crystal X-ray structure determination of three cadmium(II) complexes derived from picric acid and p-nitrobenzoic acid in the presence and absence of nitrogen donor ligand N-(hydroxyethyl)ethylenediamine. Polyhedron, 2018, 139, 178-188.	1.0	6
31	Cytotoxic Flavones from the Stem Bark of Bougainvillea spectabilis Willd. Planta Medica, 2018, 84, 129-134.	0.7	13
32	A New Tocopherol Derivative and Cytotoxicity from the Leaves of Dalbergia velutina. Natural Product Communications, 2018, 13, 1934578X1801301.	0.2	1
33	Biotransformation of β-Mangostin by an Endophytic Fungus of <i>Garcinia mangostana</i> to Furnish Xanthenes with an Unprecedented Heterocyclic Skeleton. Journal of Natural Products, 2018, 81, 2244-2250.	1.5	13
34	Sulfonic Acid-Containing Flavonoids from the Roots of <i>Phyllanthus acidus</i> . Journal of Natural Products, 2018, 81, 2026-2031.	1.5	30
35	Tsavoenones A–C: unprecedented polyketides with a 1,7-dioxadispiro[4.0.4.4]tetradecane core from the lichen <i>Parmotrema tsavoense</i> . Organic and Biomolecular Chemistry, 2018, 16, 5913-5919.	1.5	26
36	Structure–antioxidant activity relationship of β-cyclodextrin inclusion complexes with olive tyrosol, hydroxytyrosol and oleuropein: Deep insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydrate Polymers, 2018, 199, 661-669.	5.1	32

#	Article	IF	CITATIONS
37	First structural evidence of biologically important dinegative ferulate ion: Synthesis, characterization, single crystal X-ray structure and DFT calculation of [Cu(en)2(H2O)2](fer). Polyhedron, 2017, 126, 245-251.	1.0	6
38	"Solvent-Less―Mechanochemical Approach to the Synthesis of Pyrimidine Derivatives. ACS Sustainable Chemistry and Engineering, 2017, 5, 1468-1475.	3.2	47
39	Effect of differently substituted methoxybenzoates on the supramolecular assemblies of three [Cu(N-hyden)2](o-/m-/p-methoxybenzoate)2 complexes: Synthesis, spectroscopic characterization and single crystal structure determination. Polyhedron, 2017, 133, 213-221.	1.0	7
40	Identification of highly potent α -glucosidase inhibitory and antioxidant constituents from <i>Zizyphus rugosa</i> bark: enzyme kinetic and molecular docking studies with active metabolites. Pharmaceutical Biology, 2017, 55, 1436-1441.	1.3	22
41	Diaquabis(ethylenediamine)copper(II) vs. monoaquabis(ethylenediamine)copper(II): Synthesis, characterization, single crystal X-ray structure determination, theoretical calculations and antimicrobial activities of [Cu(en)2(H2O)2](2-phenoxybenzoate)2·H2O and [Cu(en)2(H2O)](diphenylacetate)2·3H2O. Polyhedron. 2017. 123. 430-440.	1.0	14
42	Waterâ€Assisted Nitrile Oxide Cycloadditions: Synthesis of Isoxazoles and Stereoselective Syntheses of Isoxazolines and 1,2,4â€Oxadiazoles. Angewandte Chemie, 2016, 128, 4065-4069.	1.6	17
43	Waterâ€Assisted Nitrile Oxide Cycloadditions: Synthesis of Isoxazoles and Stereoselective Syntheses of Isoxazolines and 1,2,4â€Oxadiazoles. Angewandte Chemie - International Edition, 2016, 55, 3997-4001.	7.2	104
44	Fluorescent Chemosensors for Selective and Sensitive Detection of Phosmet/Chlorpyrifos with Octahedral Ni2+ Complexes. Inorganic Chemistry, 2016, 55, 4874-4883.	1.9	35
45	Syntheses, characterization, single crystal X-ray structures and antimicrobial activities of four Cu(II) 3-halobenzoate complexes; Cu(3-chloro/bromobenzoate)2 in the presence of heterocyclic N-donor ligands β/γ-picolines. Polyhedron, 2016, 119, 494-504.	1.0	6
46	Enhancement of antioxidant activity of green tea epicatechins in β-cyclodextrin cavity: Single-crystal X-ray analysis, DFT calculation and DPPH assay. Carbohydrate Polymers, 2016, 151, 1139-1151.	5.1	42
47	Cytotoxic sesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Phytochemistry, 2016, 122, 126-138.	1.4	49
48	Cylindroxanthones A–C, three new xanthones and their cytotoxicity from the stem bark of Garcinia cylindrocarpa. Fìtoterapìâ, 2016, 108, 62-65.	1.1	18
49	Unusual coordination modes of ligand 2-chloro-5-nitrobenzene sulfonate: Synthesis, spectroscopic characterization, thermal and X-ray structural studies of metal 2-chloro-5-nitrobenzene sulfonate complexes, metal = Tl(I), Cu(II), Ag(I) and Pb(II). Journal of Molecular Structure, 2016, 1107, 47-56.	1.8	10
50	Bougainvinones A–H, Peltogynoids from the Stem Bark of Purple <i>Bougainvillea spectabilis</i> and Their Cytotoxic Activity. Journal of Natural Products, 2016, 79, 939-945.	1.5	16
51	Crystallographic evidence for β-cyclodextrin inclusion complexation facilitating the improvement of antioxidant activity of tea (+)-catechin and (â^')-epicatechin. Carbohydrate Polymers, 2016, 140, 362-373.	5.1	52
52	Synthesis of functionalizable derivatives of 3,4â€ethylenedioxythiophene and their solidâ€state polymerizations. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
53	Drimane Sesquiterpene-Conjugated Amino Acids from a Marine Isolate of the Fungus Talaromyces minioluteus (Penicillium Minioluteum). Marine Drugs, 2015, 13, 3567-3580.	2.2	36
54	The role of steric constraints in the formation of rare aqua bridged coordination polymers: Synthesis, characterization and X-ray structures of polymeric, [Cu(2-chlorobenzoate)2(β-picoline)2(μ-H2O)]n and monomeric, [Cu(2-chlorobenzoate)2(γ-picoline)2(H2O)]. Journal of Molecular Structure, 2015, 1092, 225-232.	1.8	17

#	Article	IF	CITATIONS
55	One-pot synthesis of tricyclic dihydropyrimidine derivatives and their biological evaluation. Tetrahedron, 2015, 71, 332-337.	1.0	49
56	Antimycobacterial activity of natural products and synthetic agents: Pyrrolodiquinolines and vermelhotin as anti-tubercular leads against clinical multidrug resistant isolates of Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2015, 89, 1-12.	2.6	74
57	Novel Cucurbitane Triterpenoids and Anti-cholinesterase Activities of Constituents from Momordica charantia L. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	1
58	Structure and dielectric relaxations of antibacterial sulfonated polystyrene and silver nanocomposites. Polymers for Advanced Technologies, 2014, 25, 1027-1033.	1.6	3
59	Biotransformation of α-mangostin by Colletotrichum sp. MT02 and Phomopsis euphorbiae K12. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 174-179.	1.8	10
60	Aqueous-Phase Synthesis of Copper Nanoparticles Using Organic Nanoparticles: Application of Assembly in Detection of Cr ³⁺ . ACS Sustainable Chemistry and Engineering, 2014, 2, 982-990.	3.2	32
61	One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp Phytochemistry, 2014, 108, 87-94.	1.4	101
62	An organocatalyst from renewable materials for the synthesis of coumarins and chromenes: three-component reaction and multigram scale synthesis. RSC Advances, 2014, 4, 13708-13718.	1.7	23
63	Dynamics and Thermodynamics of Crystalline Polymorphs. 3. Î ³ -Glycine, Analysis of Variable-Temperature Atomic Displacement Parameters, and Comparison of Polymorph Stabilities. Journal of Physical Chemistry A, 2014, 118, 9951-9959.	1.1	17
64	Tricyclic and Spirobicyclic Norsesquiterpenes from the Endophytic Fungus <i>Pseudolagarobasidium acaciicola</i> . European Journal of Organic Chemistry, 2014, 2014, 3976-3980.	1.2	35
65	Effect of the ring size and asymmetry of cyclodextrins on their inclusion ability: a theoretical study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 439-445.	0.9	7
66	Dynamics and Thermodynamics of Crystalline Polymorphs. 2. β-Glycine, Analysis of Variable-Temperature Atomic Displacement Parameters. Journal of Physical Chemistry A, 2013, 117, 8001-8009.	1.1	18
67	Fluorescent Organic Nanoparticles of Biginelli-Based Molecules: Recognition of Hg ²⁺ and Cl [–] in an Aqueous Medium. Inorganic Chemistry, 2013, 52, 13830-13832.	1.9	64
68	Water-mediated supramolecular architecture of Co(<scp>iii</scp>)–phenanthroline complexes: organizational control to 2D-layers and 3D-square cavities through substituted aryl carboxylate anions. CrystEngComm, 2013, 15, 1153-1163.	1.3	8
69	Dynamics and Thermodynamics of Crystalline Polymorphs: α-Glycine, Analysis of Variable-Temperature Atomic Displacement Parameters. Journal of Physical Chemistry A, 2012, 116, 8092-8099.	1.1	24
70	Fluorometric and theoretical studies on inclusion complexes of β-cyclodextrin and d-, l-phenylalanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 736-743.	2.0	16
71	A new cytotoxic apotirucallane from the roots of Walsura trichostemon. Phytochemistry Letters, 2012, 5, 665-667.	0.6	21
72	Nitrone formation in phosphate buffer and aqueous solutions: novel chemistry inspired by a natural product. Tetrahedron Letters, 2012, 53, 2129-2131.	0.7	3

#	Article	IF	CITATIONS
73	A novel approach for the synthesis of lophocladines A, B and C1 analogues. Tetrahedron Letters, 2011, 52, 6142-6144.	0.7	8
74	Itaconic acid derivatives and diketopiperazine from the marine-derived fungus Aspergillus aculeatus CRI322-03. Phytochemistry, 2011, 72, 816-820.	1.4	34
75	Weak C-H…F-C interactions in carboxylate anion binding: Synthesis, spectroscopic and X-ray structural studies of [Co(phen)2CO3]2 (C7H3O2FCl)Cl·11H2O and [Co(phen)2CO3](C7H3NO4Cl)·6H2O. Journal of Chemical Sciences, 2010, 122, 739-750.	0.7	4
76	Curvularidesâ€A–E: Antifungal Hybrid Peptide–Polyketides from the Endophytic Fungus <i>Curvularia geniculata</i> . Chemistry - A European Journal, 2010, 16, 11178-11185.	1.7	48
77	Molecular docking study for the prediction of enantiodifferentiation of chiral styrene oxides by octakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-γ-cyclodextrin. Journal of Molecular Graphics and Modelling, 2010, 28, 506-512.	1.3	26
78	Paraherquamide E. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2227-o2227.	0.2	1
79	6-Butyryl-5-hydroxy-4-phenylseselin. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2464-o2465.	0.2	0
80	Second sphere coordination in fluoroanion binding: Synthesis, spectroscopic and X-ray structural study of [Co(phen)2CO3](Pfbz)·6H2O. Journal of Fluorine Chemistry, 2009, 130, 650-655.	0.9	14
81	Cationic cobalt(III) complex as anion receptor: Synthesis, spectroscopic characterization, single-crystal X-ray structure determination and packing analyses of [Co(phen)2CO3](4-aminobenzenesulphonate).6H2O. Journal of Molecular Structure, 2009, 928, 18-24.	1.8	9
82	Inclusion complexes of \hat{I}^2 -cyclodextrin with pyrazinamide and piperazine: Crystallographic and theoretical studies. Supramolecular Chemistry, 2009, 21, 384-393.	1.5	11
83	5,7-Dimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one methanol solvate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2693-o2693.	0.2	1
84	(E)-2,4,7-Trichloro-3-hydroxy-8-methoxy-1,9-dimethyl-6-(1-methyl-1-propenyl)-11H-dibenzo[b,e][1,4]dioxepin-11-o monohydrate (nidulin monohydrate). Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2470-o2471.	one 0.2	1
85	3,5,7-Trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2706-o2706.	0.2	2
86	Crystal form III of β-cyclodextrin–ethanol inclusion complex: layer-type structure with dimeric motif. Carbohydrate Research, 2008, 343, 2285-2291.	1.1	11
87	Polymorphism in β-cyclodextrin–benzoic acid inclusion complex: a kinetically controlled crystal growth according to the Ostwald's rule. Carbohydrate Research, 2008, 343, 2451-2458.	1.1	15
88	Specific Heat of Molecular Crystals from Atomic Mean Square Displacements with the Einstein, Debye, and Nernstâ^'Lindemann Models. Journal of Physical Chemistry B, 2006, 110, 26129-26134.	1.2	20
89	Crystal Structures ofβ-Cyclodextrin Complexes with Formic Acid and Acetic Acid. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 47, 39-45.	1.6	21
90	Crystal structure of β-cyclodextrin–benzoic acid inclusion complex. Carbohydrate Research, 2003, 338, 439-446.	1.1	48

#	Article	IF	CITATIONS
91	A new crystal form of β-cyclodextrin–ethanol inclusion complex: channel-type structure without long guest molecules. Carbohydrate Research, 2003, 338, 1581-1589.	1.1	34
92	2-(5,7-Dihydroxy-4-oxo-4H-chromen-3-yl)-5-methoxy-1,4-benzoquinone (isoflavonequinone). Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o363-o365.	0.2	3
93	3,9-Dimethoxy-6a,11a-dihydro-6H-benzo[4,5]furo[3,2-c]chromene-4,10-diol monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o381-o383.	0.2	4
94	10-Hydroxy-9-methoxy-5,6,13,13a-tetrahydro[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinolin-8-one. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o919-o921.	0.2	1
95	Crystal structure of β-cyclodextrin–dimethylsulfoxide inclusion complex. Carbohydrate Research, 2002, 337, 2487-2494.	1.1	29
96	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 43, 115-125.	1.6	21
97	Hydrogen-bond network in cyclodecaamylose hydrate at 20â€K; neutron diffraction study of novel structural motifs band-flip and kink in α-(1→4)-D-glucoside oligosaccharides. Acta Crystallographica Section B: Structural Science, 2001, 57, 833-841.	1.8	14
98	Novel Type of Thermostable Channel Clathrate Hydrate Formed by Heptakis(2,6-di-O-methyl)-β-cyclodextrinâ‹15 H2O—A Paradigm of the Hydrophobic Effect. Angewandte Chemie - International Edition, 2000, 39, 897-899.	7.2	27
99	Crystal structure of octakis(2,3,6-tri-O-methyl)-γ-cyclodextrin·4.5 H2O: evidence for conformational flexibility of permethylated cyclodextrins. Carbohydrate Research, 2000, 328, 399-407.	1.1	16
100	Crystal structure of heptakis(2,6-di-O-methyl)-β-cyclodextrin dihydrate: a water molecule in an apolar cavity. Carbohydrate Research, 1999, 315, 199-205.	1.1	34
101	Crystal structure of hexakis(2,6-di-O-methyl)-α-cyclodextrin–acetonitrile dihydrate: a channel formed by methyl groups harbors a chain of five partially occupied water sites. Carbohydrate Research, 1999, 320, 120-128.	1.1	0
102	Crystal structure of hexakis(2,6-di-O-methyl)-α-cyclodextrin–acetonitrile dihydrate: a channel formed by methyl groups harbors a chain of five partially occupied water sites. Carbohydrate Research, 1999, 323, 245-253.	1.1	0
103	Variation of a Theme:  Crystal Structure with Four Octakis(2,3,6-tri-O-methyl)-γ-cyclodextrin Molecules Hydrated Differently by a Total of 19.3 Water,. Journal of the American Chemical Society, 1999, 121, 3321-3327.	6.6	20
104	Crystal structure of α-cyclodextrin-acetonitrile-hexahydrate11Data have been deposited with the Cambridge Crystallographic Data Center. These data may be obtained, on request, from the Director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, UK, CB2 IEZ. Tel: +44 223 336408; Fax: +44 223 336033 Carbohydrate Research, 1998, 307, 191-197.	1.1	23
105	Charge transfer, polarizability and stability of Li–C60 complexes. Chemical Physics Letters, 1998, 285, 221-225.	1.2	25
106	Characteristics of the LinC60Complexes forn= 1â^'6 and 12:Â Anab InitioStudy. Journal of Physical Chemistry A, 1997, 101, 5551-5554.	1.1	15
107	Ab initio study of collisions between Li and C60. Chemical Physics Letters, 1997, 266, 427-430.	1.2	4