
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5888370/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF        | CITATIONS      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 1  | Ion Exchange Resins: Catalyst Recovery and Recycle. Chemical Reviews, 2009, 109, 515-529.                                                                                                                                                                                 | 47.7      | 292            |
| 2  | Progress in stereoselective catalysis by metal complexes with chiral ferrocenyl phosphines.<br>Coordination Chemistry Reviews, 2004, 248, 2131-2150.                                                                                                                      | 18.8      | 223            |
| 3  | Environmentally Friendly Synthesis of $\hat{1}^3$ -Valerolactone by Direct Catalytic Conversion of Renewable Sources. ACS Catalysis, 2015, 5, 1882-1894.                                                                                                                  | 11.2      | 182            |
| 4  | Enantioselective Hydrogenation of 2-Methylquinoxaline to<br>(â^')-(2S)-2-Methyl-1,2,3,4-tetrahydroquinoxaline by Iridium Catalysis. Organometallics, 1998, 17, 3308-3310.                                                                                                 | 2.3       | 150            |
| 5  | Synthetic models for catechol 1,2-dioxygenases. Interception of a metal catecholate-dioxygen adduct.<br>Journal of the American Chemical Society, 1991, 113, 3181-3183.                                                                                                   | 13.7      | 90             |
| 6  | Chiral P,S-Ligands Based on β-d-Thioglucose Tetraacetate. Palladium(II) Complexes and Allylic<br>Alkylation. Organometallics, 1996, 15, 1879-1888.                                                                                                                        | 2.3       | 90             |
| 7  | 1,3-Diphenylallyl Complexes of Palladium(II): NMR, x-ray, and Catalytic Studies. Organometallics, 1995, 14, 5160-5170.                                                                                                                                                    | 2.3       | 87             |
| 8  | Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis.<br>Chemical Society Reviews, 2020, 49, 6329-6363.                                                                                                                       | 38.1      | 87             |
| 9  | Recent Aspects of Asymmetric Catalysis by Immobilized Chiral Metal Catalysts. Topics in Catalysis, 2002, 19, 17-32.                                                                                                                                                       | 2.8       | 85             |
| 10 | A New Chiral Tridentate Ferrocenyl Ligand. Synthesis and Characterization of Its Palladium(II) and Nickel(II) Complexes. Organometallics, 1995, 14, 3570-3573.                                                                                                            | 2.3       | 71             |
| 11 | Synthesis and Characterization of Ruthenium(II) Complexes Containing Chiral Bis(ferrocenyl)â^'P3or<br>â^'P2S Ligands. Asymmetric Transfer Hydrogenation of Acetophenone. Organometallics, 1997, 16,<br>3004-3014.                                                         | 2.3       | 70             |
| 12 | Hydrogenation of Arenes over Silica-Supported Catalysts That Combine a Grafted Rhodium Complex<br>and Palladium Nanoparticles:  Evidence for Substrate Activation on Rhsingle-siteâ^'Pdmetal Moieties.<br>Journal of the American Chemical Society, 2006, 128, 7065-7076. | 13.7      | 70             |
| 13 | Synthesis of New Polydentate Nitrogen Ligands and Their Use in Ethylene Polymerization in<br>Conjunction with Iron(II) and Cobalt(II) Bis-halides and Methylaluminoxane. Organometallics, 2007, 26,<br>4639-4651.                                                         | 2.3       | 69             |
| 14 | Styrene Cyclopropanation and Ethyl Diazoacetate Dimerization Catalyzed by Ruthenium Complexes<br>Containing Chiral Tridentate Phosphine Ligands. Organometallics, 1999, 18, 1961-1966.                                                                                    | 2.3       | 66             |
| 15 | Heterogeneous Bifunctional Metal/Acid Catalysts for Selective Chemical Processes. European Journal of Inorganic Chemistry, 2012, 2012, 3807-3823.                                                                                                                         | 2.0       | 65             |
| 16 | Activation and Functionalization of White Phosphorus at Rhodium: Experimental and Computational<br>Analysis of the[(triphos)Rh (ŀ1:ŀ2-P4RR′)]Y Complexes (triphos=MeC(CH2PPh2)3; R=H, Alkyl, Aryl; R′=2) T                                                                | jETBQ2q00 | 0 ngeBT /Overl |
| 17 | Regio- and stereoselective dimerization of 1-alkynes catalyzed by an Os(II) complex. Inorganica Chimica<br>Acta, 1994, 220, 5-19.                                                                                                                                         | 2.4       | 62             |

18Immobilization of Optically Active Rhodium-Diphosphine Complexes on Porous Silica via Hydrogen<br/>Bonding. Advanced Synthesis and Catalysis, 2001, 343, 41-45.4.362

| #  | Article                                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Energy efficient continuous production of γ-valerolactone by bifunctional metal/acid catalysis in one pot. Green Chemistry, 2014, 16, 3434.                                                                                                                                                                                                  | 9.0  | 62        |
| 20 | Transition metal complexes with the C1-symmetric diphosphines<br>(R)-(R)-3-benzyl-2,4-bis(diphenylphosphino)pentane and<br>(R)-(R)-3-benzyl(p-sulphonate)-2,4-bis(diphenylphosphino)pentane sodium salt. Applications to<br>enantioselective catalysis in different phase systems. Journal of Organometallic Chemistry, 2001, 621,<br>26-33. | 1.8  | 61        |
| 21 | Hydrolysis of Dinuclear Ruthenium Complexes [{CpRu(PPh3)2}2(μ,η1:1-L)][CF3SO3]2 (L=P4, P4S3): Simple Access to Metal Complexes of P2H4 and PH2SH. Chemistry - A European Journal, 2007, 13, 6682-6690.                                                                                                                                       | 3.3  | 60        |
| 22 | Molecular Recognition through H-Bonding in Micelles Formed by Dioctylphosphatidyl Nucleosides.<br>Journal of Physical Chemistry B, 1999, 103, 4916-4922.                                                                                                                                                                                     | 2.6  | 59        |
| 23 | Continuous Partial Hydrogenation Reactions by Pd@unconventional Bimodal Porous Titania<br>Monolith Catalysts. ACS Catalysis, 2012, 2, 2194-2198.                                                                                                                                                                                             | 11.2 | 58        |
| 24 | Chemoselective oxidation of 3,5-di-tert-butylcatechol by molecular oxygen. Catalysis by an iridium(III) catecholate through its dioxygen adduct. Inorganic Chemistry, 1992, 31, 1523-1529.                                                                                                                                                   | 4.0  | 57        |
| 25 | Continuousâ€Flow Oxidation of HMF to FDCA by Resinâ€&upported Platinum Catalysts in Neat Water.<br>ChemSusChem, 2019, 12, 2558-2563.                                                                                                                                                                                                         | 6.8  | 56        |
| 26 | Green semi-hydrogenation of alkynes by Pd@borate monolith catalysts under continuous flow.<br>Journal of Catalysis, 2014, 311, 212-220.                                                                                                                                                                                                      | 6.2  | 53        |
| 27 | Dioxygen uptake and transfer by Co(III), Rh(III) and Ir(III) catecholate complexes. Inorganica Chimica<br>Acta, 1992, 198-200, 31-56.                                                                                                                                                                                                        | 2.4  | 52        |
| 28 | Metal Coordination and Hg-C Bond Protonolysis in Organomercury(II) Compounds. Synthesis,<br>Characterization, and Reactivity of the Tetrahedral Complexes [(np3)HgR][(CF3)SO3] {np3 =<br>N(CH2CH2PPh2)3; R = CH3, C2H5, C6H5}. Inorganic Chemistry, 1994, 33, 6163-6170.                                                                     | 4.0  | 49        |
| 29 | Facile heterogeneous catalytic hydrogenations of Cî€N and Cî€O bonds in neat water: anchoring of water-soluble metal complexes onto ion-exchange resins. Green Chemistry, 2012, 14, 3211.                                                                                                                                                    | 9.0  | 49        |
| 30 | Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes. Beilstein<br>Journal of Organic Chemistry, 2017, 13, 734-754.                                                                                                                                                                                         | 2.2  | 49        |
| 31 | Dioxygen and Carbon Monoxide Uptake by Iridium(I) Complexes Stabilized by Mixed N,P-Donor Ligands.<br>Inorganic Chemistry, 1994, 33, 1622-1630.                                                                                                                                                                                              | 4.0  | 48        |
| 32 | In situ generation of resin-supported Pd nanoparticles under mild catalytic conditions: a green route<br>to highly efficient, reusable hydrogenation catalysts. Catalysis Science and Technology, 2012, 2, 2279.                                                                                                                             | 4.1  | 47        |
| 33 | Hydrogenation of Quinoline by Rhodium Catalysts Modified with the Tripodal Polyphosphine Ligand MeC(CH2PPh2)3. Helvetica Chimica Acta, 2001, 84, 2895-2923.                                                                                                                                                                                  | 1.6  | 46        |
| 34 | Selective hydrogenation over Pd nanoparticles supported on a pore-flow-through silica monolith microreactor with hierarchical porosity. Dalton Transactions, 2013, 42, 1378-1384.                                                                                                                                                            | 3.3  | 45        |
| 35 | Recycling Asymmetric Hydrogenation Catalysts by Their Immobilization onto Ion-Exchange Resins.<br>Chemistry - A European Journal, 2006, 12, 5666-5675.                                                                                                                                                                                       | 3.3  | 44        |
| 36 | Controlling the Activation of White Phosphorus: Formation of Phosphorous Acid and<br>Ruthenium oordinated 1â€Hydroxytriphosphane by Hydrolysis of Doubly Metalated P <sub>4</sub> .<br>Angewandte Chemie - International Edition, 2008, 47, 4425-4427.                                                                                       | 13.8 | 44        |

3

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Selective direct conversion of C <sub>5</sub> and C <sub>6</sub> sugars to high added-value chemicals by a bifunctional, single catalytic body. Green Chemistry, 2016, 18, 2935-2940.                                                                           | 9.0  | 44        |
| 38 | A Snapshot of P4 Tetrahedron Opening: Rh- and Ir-Mediated Activation of White Phosphorus.<br>Angewandte Chemie - International Edition, 2006, 45, 4182-4185.                                                                                                    | 13.8 | 43        |
| 39 | The tetranuclear trianion [Fe4Te4(SC6H5)4]3-: crystal and molecular structure and magnetic properties. Journal of the American Chemical Society, 1990, 112, 7238-7246.                                                                                          | 13.7 | 42        |
| 40 | Copolymerization of carbon monoxide with ethene catalyzed by bis-chelated palladium(II) complexes containing diphosphine and dinitrogen ligands. New Journal of Chemistry, 1999, 23, 929-938.                                                                   | 2.8  | 42        |
| 41 | Emerging strategies in sustainable fine-chemical synthesis: asymmetric catalysis by metal nanoparticles. Dalton Transactions, 2010, 39, 8391.                                                                                                                   | 3.3  | 42        |
| 42 | Thermal and photochemical carbon-hydrogen bond activation reactions at iridiumpiCoordination vs. C-H cleavage of ethene, styrene, and phenylacetylene. Organometallics, 1993, 12, 2505-2514.                                                                    | 2.3  | 40        |
| 43 | Assembling ethylene, alkyl, hydride, and carbon monoxide ligands at iridium. Organometallics, 1991, 10,<br>2227-2238.                                                                                                                                           | 2.3  | 39        |
| 44 | Dioxomolybdenum(VI) Complexes Stabilized by Polydentate Ligands with NO3, N2O2, and NS2<br>Donor-Atom Sets. Inorganic Chemistry, 1994, 33, 3180-3186.                                                                                                           | 4.0  | 39        |
| 45 | Preparative, potentiometric and NMR studies of the interaction of beryllium(II) with oxalate and malonate. X-ray structure of K3[Be3(OH)3(O2C–CH2–CO2)3]·6H2O. Inorganica Chimica Acta, 1997, 262, 187-194.                                                     | 2.4  | 39        |
| 46 | Metal nanoparticles immobilized on ion-exchange resins: A versatile and effective catalyst platform for sustainable chemistry. Chinese Journal of Catalysis, 2015, 36, 1157-1169.                                                                               | 14.0 | 38        |
| 47 | Hydrogenation of Indole by Phosphine-Modified Rhodium and Ruthenium Catalysts. Organometallics, 2002, 21, 1430-1437.                                                                                                                                            | 2.3  | 37        |
| 48 | Hydrodynamic cavitation as an energy efficient process to increase biochar surface area and porosity:<br>A case study. Journal of Cleaner Production, 2019, 210, 159-169.                                                                                       | 9.3  | 37        |
| 49 | In Situ and Reactor Study of the Enantioselective Hydrogenation of Acetylacetone by Ruthenium<br>Catalysis with the New Chiral Diphosphine Ligand (R)-(R)-3-Benzyl-2,4-bis(diphenylphosphino)pentane.<br>Organometallics, 2000, 19, 2450-2461.                  | 2.3  | 35        |
| 50 | The first tridentate phosphine ligand combining planar, phosphorus and carbon chiralityElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b208384a/. Chemical Communications, 2002, , 2672-2673. | 4.1  | 33        |
| 51 | Rhodium-Mediated Functionalization of White Phosphorus:Â A Novel Formation of Câ^'P Bonds.<br>Organometallics, 1999, 18, 4237-4240.                                                                                                                             | 2.3  | 31        |
| 52 | lodine Activation of Coordinated White Phosphorus: Formation and Transformation of<br>1,3â€Đihydrideâ€2â€iodidecyclotetraphosphane. Angewandte Chemie - International Edition, 2012, 51,<br>8628-8631.                                                          | 13.8 | 31        |
| 53 | Synthesis and characterization of chiral bis-ferrocenyl triphosphine Ni(II) and Rh(III) complexes and their use as catalyst precursors for acetalization reactions. Journal of Molecular Catalysis A, 1999, 145, 139-146.                                       | 4.8  | 28        |
| 54 | Novel chiral ferrocenyl-imino phosphine ligands and their use in palladium catalyzed allylic<br>alkylations. Tetrahedron Letters, 2003, 44, 8279-8283.                                                                                                          | 1.4  | 27        |

| #  | Article                                                                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nucleophilic addition of phosphines to rhenium allenylidenes. Unprecedented double P–H bond activation to give an η1-P-phospha-1-butadienyl ligand. Dalton Transactions, 2003, , 4121-4131.                                                                                                                                                      | 3.3  | 27        |
| 56 | Green production of polymer-supported PdNPs: application to the environmentally benign catalyzed synthesis of cis-3-hexen-1-ol under flow conditions. Dalton Transactions, 2012, 41, 12666.                                                                                                                                                      | 3.3  | 27        |
| 57 | Sustainable processes for the catalytic synthesis of safer chemical substitutes of<br>N-methyl-2-pyrrolidone. Molecular Catalysis, 2019, 466, 60-69.                                                                                                                                                                                             | 2.0  | 27        |
| 58 | Valorisation of plastic waste via metal-catalysed depolymerisation. Beilstein Journal of Organic<br>Chemistry, 2021, 17, 589-621.                                                                                                                                                                                                                | 2.2  | 27        |
| 59 | Heterobimetallic Cooperation Mediates the Transformation of White Phosphorus into Zwitterionic<br><i>catenaâ€</i> Phosphonium(+)diphosphenide(â^') Ligands. Angewandte Chemie - International Edition,<br>2008, 47, 3766-3768.                                                                                                                   | 13.8 | 26        |
| 60 | Recycling asymmetric hydrogenation catalysts by their immobilisation onto ion-exchange<br>resinsElectronic supplementary information (ESI) available: Experimental section, 31P{1H} HP NMR<br>spectra, typical EDS surface area spectrum and ESEM images. See<br>http://www.rsc.org/suppdata/dt/b4/b406179a/. Dalton Transactions, 2004, , 1783. | 3.3  | 25        |
| 61 | Dioxomolybdenum(VI) Complexes with New Enantiomerically Pure Amino Diol Ligands. Inorganic<br>Chemistry, 1996, 35, 3362-3368.                                                                                                                                                                                                                    | 4.0  | 24        |
| 62 | Getting a Clue to the Hydrolytic Activation of White Phosphorus: The Generation and Stabilization of P(OH) <sub>2</sub> PHPHPH(OH) at Ruthenium Centers. Inorganic Chemistry, 2009, 48, 1091-1096.                                                                                                                                               | 4.0  | 24        |
| 63 | Synthesis and characterization of the tetraazamacrocycle<br>4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (H2Me2DO2A) and of its neutral copper(II)<br>complex [Cu(Me2DO2A)]. A new 64Cu-labeled macrocyclic complex for positron emission tomography<br>imaging â€. Dalton Transactions RSC. 2000 2393-2401.                   | 2.3  | 23        |
| 64 | Unconventional Pd@Sulfonated Silica Monoliths Catalysts for Selective Partial Hydrogenation Reactions under Continuous Flow. ChemCatChem, 2017, 9, 3245-3258.                                                                                                                                                                                    | 3.7  | 22        |
| 65 | Synthesis, characterization, protonation studies and X-ray crystal structure of ReH5(PPh3)2(PTA)<br>(PTA=1,3,5-triaza-7-phosphaadamantane). Journal of Organometallic Chemistry, 2006, 691, 629-637.                                                                                                                                             | 1.8  | 21        |
| 66 | Chiral Rh phosphine–phosphite catalysts immobilized on ionic resins for the enantioselective hydrogenation of olefins in water. Green Chemistry, 2015, 17, 3826-3836.                                                                                                                                                                            | 9.0  | 21        |
| 67 | Benzene Hydrogenation by Silica-Supported Catalysts Made of Palladium Nanoparticles and Electrostatically Immobilized Rhodium Single Sites. Organometallics, 2008, 27, 2809-2824.                                                                                                                                                                | 2.3  | 20        |
| 68 | Lowâ€Temperature Continuousâ€Flow Dehydration of Xylose Over Waterâ€Tolerant Niobia–Titania<br>Heterogeneous Catalysts. ChemSusChem, 2018, 11, 3649-3660.                                                                                                                                                                                        | 6.8  | 20        |
| 69 | Ruthenium(II) Complexes with Triphosphane Ligands Combining Planar, Phosphorus, and Carbon<br>Chirality: Application to Asymmetric Reduction of Trifluoroacetophenone. European Journal of<br>Inorganic Chemistry, 2003, 2003, 4166-4172.                                                                                                        | 2.0  | 19        |
| 70 | Metal Nanoparticles Supported on Perfluorinated Superacid Polymers: A Family of Bifunctional<br>Catalysts for the Selective, Oneâ€Pot Conversion of Vegetable Substrates in Water. ChemCatChem, 2017,<br>9, 4256-4267.                                                                                                                           | 3.7  | 18        |
| 71 | Synthesis, characterisation and molecular structure of Re(iii) 2-oxacyclocarbenes stabilised by a benzoyldiazenido ligand. Dalton Transactions, 2004, , 713.                                                                                                                                                                                     | 3.3  | 17        |
| 72 | A mild route to solid-supported rhodium nanoparticle catalysts and their application to the selective hydrogenation reaction of substituted arenes. Catalysis Science and Technology, 2015, 5, 3762-3772.                                                                                                                                        | 4.1  | 17        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                    | IF               | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 73 | PdNP@Titanate Nanotubes as Effective Catalyst for Continuousâ€Flow Partial Hydrogenation Reactions.<br>ChemCatChem, 2016, 8, 1001-1011.                                                                                                                                                                                                                                                    | 3.7              | 16        |
| 74 | Valence localization in [M(triphos)(3,5-di-tert-butyl-catecholate)]+ ions (M = Co, Rh or Ir) probed by resonance Raman spectroscopy. Inorganica Chimica Acta, 1996, 252, 157-166.                                                                                                                                                                                                          | 2.4              | 15        |
| 75 | Partial hydrogenation reactions over Pd-containing hybrid inorganic/polymeric catalytic membranes.<br>Applied Catalysis A: General, 2013, 459, 81-88.                                                                                                                                                                                                                                      | 4.3              | 15        |
| 76 | NanoSelect Precious Metal Catalysts and their Use in Asymmetric Heterogeneous Catalysis.<br>ChemCatChem, 2014, 6, 2904-2909.                                                                                                                                                                                                                                                               | 3.7              | 15        |
| 77 | New enantiomerically pure aminoalcohols from (R)-α-methylbenzylamine and cyclohexene oxide.<br>Tetrahedron: Asymmetry, 1996, 7, 843-850.                                                                                                                                                                                                                                                   | 1.8              | 13        |
| 78 | Dynamic Behaviour of the<br>[(Triphos)Rh(η <sup>1</sup> :η <sup>2</sup> â€P <sub>4</sub> RRâ€ <sup>2</sup> )] <sup><i>n</i>+</sup> Complexes [Triphos<br>MeC(CH <sub>2</sub> Ph <sub>2</sub> ) <sub>3</sub> ; R = H, Alkyl, Aryl; Râ€ <sup>2</sup> = Lone Pair, H, Me; <i>n</i> =<br>0, 1]: NMR and Computational Studies. European Journal of Inorganic Chemistry, 2008, 2008, 1392-1399. | <sup>5</sup> 2.0 | 13        |
| 79 | Collective headgroup conformational transition in twisted micellar superstructures. Soft Matter, 2008, 4, 1102.                                                                                                                                                                                                                                                                            | 2.7              | 13        |
| 80 | Continuous flow synthesis of Rh and Pd nanoparticles onto ion-exchange borate monoliths:<br>application to selective catalytic hydrogenation of unsaturated carbonyl compounds under flow<br>conditions. Catalysis Science and Technology, 2014, 4, 3835-3839.                                                                                                                             | 4.1              | 13        |
| 81 | Interaction of methylmercury(II) with the bifunctional ligand o-diphenylphosphinobenzoate, dpb.<br>Synthesis and characterization of [(dpb)HgMe] and [(dpbo)HgMe],<br>dpbo=o-diphenylphosphinoxidebenzoate. Journal of Organometallic Chemistry, 1998, 555, 255-262.                                                                                                                       | 1.8              | 12        |
| 82 | Complexes of Rhodium(I) and Iridium(I) with the Chiral Tridentate Phosphane Pigiphos: Structure and Reactivity Studies. European Journal of Inorganic Chemistry, 2003, 2003, 601-609.                                                                                                                                                                                                      | 2.0              | 11        |
| 83 | Continuous flow hydrogenation reactions by Pd catalysts onto hybrid ZrO2/PVA materials. Applied<br>Catalysis A: General, 2014, 488, 58-65.                                                                                                                                                                                                                                                 | 4.3              | 11        |
| 84 | Beryllium(II) Complexes of the Kläi Tripodal Ligand<br>Cyclopentadienyltris(diethylphosphito-P)cobaltate(â^'). Inorganic Chemistry, 2001, 40, 2725-2729.                                                                                                                                                                                                                                   | 4.0              | 10        |
| 85 | Adducts of Cyclotriphosphorus Complexes with Cyclopentadienyl Ruthenium Fragments: Synthesis,<br>Solid-State Structure and Solution Behaviour. European Journal of Inorganic Chemistry, 2005, 2005,<br>1360-1368.                                                                                                                                                                          | 2.0              | 10        |
| 86 | Selective, aerobic oxidation reaction of alcohols by hybrid Pd/ZrO 2 /PVA catalytic membranes. Applied Catalysis A: General, 2017, 530, 217-225.                                                                                                                                                                                                                                           | 4.3              | 10        |
| 87 | Sustainable Catalytic Synthesis for a Bioâ€Based Alternative to the Reachâ€Restricted<br><i>N</i> â€Methylâ€2â€Pyrrolidone. Advanced Sustainable Systems, 2020, 4, 1900117.                                                                                                                                                                                                                | 5.3              | 10        |
| 88 | Strong Cation Exchange with Innocence: Synthesis and Characterization of Borate Containing Resins and Macroporous Monoliths. Macromolecules, 2013, 46, 5423-5433.                                                                                                                                                                                                                          | 4.8              | 8         |
| 89 | Continuous flow catalytic partial hydrogenation of hydrocarbons and alcohols over hybrid<br>Pd/ZrO2/PVA wall reactors. Applied Catalysis A: General, 2018, 558, 34-43.                                                                                                                                                                                                                     | 4.3              | 8         |
| 90 | Adduct of two 1,8-naphthyridine molecules (one protonated) with tetrachloroferrate (III). Acta Crystallographica Section C: Crystal Structure Communications, 1992, 48, 625-627.                                                                                                                                                                                                           | 0.4              | 7         |

0

| #  | Article                                                                                                                                                                                                                                            | IF                | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 91 | Progress in Understanding of the Interactions between Functionalized Polyolefins and<br>Organoâ€< scp>Layered Double Hydroxides. Macromolecular Reaction Engineering, 2014, 8, 122-133.                                                            | 1.5               | 6                  |
| 92 | Large-Scale Synthesis of Chiral Ferrocenyl Imino-Phosphines. Synthesis, 2005, 2005, 2445-2448.                                                                                                                                                     | 2.3               | 5                  |
| 93 | Enantioselective hydrogenation of prochiral substrates in catalytic membrane reactors. Catalysis<br>Science and Technology, 2011, 1, 226.                                                                                                          | 4.1               | 5                  |
| 94 | Liquid-phase synthesis of methyl isobutyl ketone over bifunctional heterogeneous catalysts comprising cross-linked perfluorinated sulfonic acid Aquivion polymers and supported Pd nanoparticles. Applied Catalysis A: General, 2021, 610, 117957. | 4.3               | 5                  |
| 95 | Chloro[o-(diphenylphosphino)benzaldehyde]{N-[o-(diphenylphosphino)benzylidene]ethylamine}(tetrachloro-o-ca<br>Acta Crystallographica Section C: Crystal Structure Communications, 1994, 50, 1414-1417.                                             | atecholato<br>0.4 | )iridium(III)      |
| 96 | Synthesis, properties and characterization of the trinuclear clusters [Co3( $\hat{A}\mu$ -SR)6(PEt3)3]X (R = Me or) Tj ETQqC                                                                                                                       | 0.0 rgBT          | Oyerlock 10        |
| 97 | Synthetic Approaches to New Diastereomerically Pure Ferrocenyl TriphosphineÂs Combining<br>Phosphorus, Planar, and Carbon Chirality. Synthesis, 2004, 2004, 345-352.                                                                               | 2.3               | 3                  |
| 98 | NMR studies on the novel heterobimetallic complexes [M(dppm)(Ph2PCH2PPh2PPPP) {Pt(PPh3)2}]OTf (M) Tj ET 2008, 46, S120-S125.                                                                                                                       | Qq0 0 0 rg<br>1.9 | gBT /Overlocl<br>3 |
| 99 | Novel Chiral Ferrocenyl-imino Phosphine Ligands and Their Use in Palladium-Catalyzed Allylic<br>Alkylations ChemInform, 2004, 35, no.                                                                                                              | 0.0               | Ο                  |

100 Asymmetric Alkylation or Amination of Allylic Esters. , 2005, , 35-57.