Markus Puschenreiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5888302/publications.pdf

Version: 2024-02-01

98 papers

5,353 citations

93792 39 h-index 97045 71 g-index

99 all docs 99 docs citations 99 times ranked 6462 citing authors

#	Article	IF	Citations
1	Comparison of four nickel hyperaccumulator species in the temperate climate zone of Central Europe. Journal of Geochemical Exploration, 2022, 234, 106933.	1.5	6
2	Selective Diffusive Gradients in Thin Films (DGT) for the Simultaneous Assessment of Labile Sr and Pb Concentrations and Isotope Ratios in Soils. Analytical Chemistry, 2022, 94, 6338-6346.	3.2	3
3	In situ spatiotemporal solute imaging of metal corrosion on the example of magnesium. Analytica Chimica Acta, 2022, 1212, 339910.	2.6	3
4	Wheat yield prediction by zero sink and equilibrium-type soil phosphorus tests. Pedosphere, 2022, 32, 543-554.	2.1	1
5	Fertilization regimes affecting nickel phytomining efficiency on a serpentine soil in the temperate climate zone. International Journal of Phytoremediation, 2021, 23, 407-414.	1.7	6
6	Root exudation of coumarins from soil-grown Arabidopsis thaliana in response to iron deficiency. Rhizosphere, 2021, 17, 100296.	1.4	15
7	Phytomanagement with grassy species, compost and dolomitic limestone rehabilitates a meadow at a wood preservation site. Ecological Engineering, 2021, 160, 106132.	1.6	4
8	Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in Austria. Eurasian Journal of Soil Science, 2021, 10, 123-131.	0.2	3
9	Millimetre-resolution mapping of citrate exuded from soil-grown roots using a novel, low-invasive sampling technique. Journal of Experimental Botany, 2021, 72, 3513-3525.	2.4	8
10	Heavy metal contents, mobility and origin in agricultural topsoils of the Galápagos Islands. Chemosphere, 2021, 272, 129821.	4.2	22
11	Effect of Chelant-Based Soil Washing and Post-Treatment on Pb, Cd, and Zn Bioavailability and Plant Uptake. Water, Air, and Soil Pollution, 2021, 232, 405.	1.1	2
12	Does the exudation of coumarins from Fe-deficient, soil-grown Brassicaceae species play a significant role in plant Fe nutrition?. Rhizosphere, 2021, 19, 100410.	1.4	7
13	Element Case Studies in the Temperate/Mediterranean Regions of Europe: Nickel. Mineral Resource Reviews, 2021, , 341-363.	1.5	13
14	Diffusive gradients in thin films predicts crop response better than calcium-acetate-lactate extraction. Nutrient Cycling in Agroecosystems, 2021, 121, 227-240.	1.1	2
15	Editorial: Exploring Plant Rhizosphere, Phyllosphere and Endosphere Microbial Communities to Improve the Management of Polluted Sites. Frontiers in Microbiology, 2021, 12, 763566.	1.5	3
16	Agromining from Secondary Resources: Recovery of Nickel and Other Valuable Elements from Waste Materials. Mineral Resource Reviews, 2021, , 299-321.	1.5	1
17	Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Journal of Environmental Management, 2020, 254, 109798.	3.8	42
18	Changes in topsoil characteristics with climate and island age in the agricultural zones of the Gal \tilde{A}_i pagos. Geoderma, 2020, 376, 114534.	2.3	8

#	Article	IF	CITATIONS
19	Comparative Genomics of Microbacterium Species to Reveal Diversity, Potential for Secondary Metabolites and Heavy Metal Resistance. Frontiers in Microbiology, 2020, 11, 1869.	1.5	29
20	Transcriptome Response of Metallicolous and a Non-Metallicolous Ecotypes of Noccaea goesingensis to Nickel Excess. Plants, 2020, 9, 951.	1.6	2
21	Metal accumulation and rhizosphere characteristics of Noccaea rotundifolia ssp. cepaeifolia. Environmental Pollution, 2020, 266, 115088.	3.7	10
22	Root foraging and avoidance in hyperaccumulator and excluder plants: a rhizotron experiment. Plant and Soil, 2020, 450, 287-302.	1.8	22
23	Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita. Environmental and Experimental Botany, 2020, 177, 104122.	2.0	25
24	Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. Environmental Science and Pollution Research, 2019, 26, 18451-18464.	2.7	43
25	A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. Journal of Environmental Management, 2019, 242, 522-528.	3 . 8	31
26	Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere, 2018, 200, 217-226.	4.2	99
27	Degradation of polycyclic aromatic hydrocarbons in a mixed contaminated soil supported by phytostabilisation, organic and inorganic soil additives. Science of the Total Environment, 2018, 628-629, 1287-1295.	3.9	39
28	Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Science of the Total Environment, 2018, 628-629, 1582-1599.	3.9	144
29	Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. Waste Management, 2018, 73, 351-359.	3.7	12
30	Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environmental and Experimental Botany, 2018, 147, 202-219.	2.0	88
31	Long-term soil accumulation of potentially toxic elements and selected organic pollutants through application of recycled phosphorus fertilizers for organic farming conditions. Nutrient Cycling in Agroecosystems, 2018, 110, 427-449.	1.1	51
32	Trace elements bioavailability to Triticum aestivum and Dendrobaena veneta in a multielement-contaminated agricultural soil amended with drinking water treatment residues. Journal of Soils and Sediments, 2018, 18, 2259-2270.	1.5	7
33	Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on 13C-labeled phenanthrene in a soil co-contaminated with trace elements using a plant assisted approach. Environmental Science and Pollution Research, 2018, 25, 6364-6377.	2.7	11
34	Phytoextraction of Cadmium: Feasibility in Field Applications and Potential Use of Harvested Biomass. Mineral Resource Reviews, 2018, , 205-219.	1.5	3
35	Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments. Environmental Science and Pollution Research, 2018, 25, 2506-2516.	2.7	28
36	Developing Sustainable Agromining Systems in Agricultural Ultramafic Soils for Nickel Recovery. Frontiers in Environmental Science, 2018, 6, .	1.5	63

#	Article	IF	Citations
37	Assessment of trace element phytoavailability in compost amended soils using different methodologies. Journal of Soils and Sediments, 2017, 17, 1251-1261.	1.5	25
38	Elucidating rhizosphere processes by mass spectrometry – A review. Analytica Chimica Acta, 2017, 956, 1-13.	2.6	26
39	Complete genome sequence of the heavy metal resistant bacterium Agromyces aureus AR33T and comparison with related Actinobacteria. Standards in Genomic Sciences, 2017, 12, 2.	1.5	15
40	Effect of Lupinus albus L. root activities on As and Cu mobility after addition of iron-based soil amendments. Chemosphere, 2017, 182, 373-381.	4.2	20
41	Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. Science of the Total Environment, 2017, 599-600, 1388-1398.	3.9	45
42	Assessment of Methods for Determining Bioavailability of Trace Elements in Soils: A Review. Pedosphere, 2017, 27, 389-406.	2.1	90
43	Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environmental and Experimental Botany, 2017, 138, 67-76.	2.0	37
44	Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer. Analytica Chimica Acta, 2017, 950, 88-97.	2.6	35
45	Waste or substrate for metal hyperaccumulating plants â€" The potential of phytomining on waste incineration bottom ash. Science of the Total Environment, 2017, 575, 910-918.	3.9	33
46	Heavy metal contents in organic baby-food-carrots. , 2017, , .		0
47	Microbial decomposition of 13C- labeled phytosiderophores in the rhizosphere of wheat: Mineralization dynamics and key microbial groups involved. Soil Biology and Biochemistry, 2016, 98, 196-207.	4.2	20
48	Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots. Environmental Pollution, 2016, 216, 215-222.	3.7	37
49	Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agriculture, Ecosystems and Environment, 2016, 219, 171-178.	2.5	84
50	Developing Effective Decision Support for the Application of "Gentle―Remediation Options: The GREENLAND Project. Remediation, 2015, 25, 101-114.	1.1	36
51	Effects of Biochars and Compost Mixtures and Inorganic Additives on Immobilisation of Heavy Metals in Contaminated Soils. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	60
52	Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant and Soil, 2015, 387, 413-424.	1.8	36
53	Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. International Journal of Phytoremediation, 2015, 17, 1005-1037.	1.7	197
54	Localized Metal Solubilization in the Rhizosphere of <i>Salix smithiana</i> upon Sulfur Application. Environmental Science & E	4.6	50

#	Article	IF	CITATIONS
55	Free metal ion availability is a major factor for tolerance and growth in Physcomitrella patens. Environmental and Experimental Botany, 2015, 110, 1-10.	2.0	13
56	Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO). Science of the Total Environment, 2014, 496, 510-522.	3.9	49
57	Accurate LCâ€ESIâ€MS/MS quantification of 2′â€deoxymugineic acid in soil and root related samples employing porous graphitic carbon as stationary phase and a ¹³ C ₄ â€labeled internal standard. Electrophoresis, 2014, 35, 1375-1385.	1.3	16
58	Speciation analysis of orthophosphate and <i>myo</i> àêinositol hexakisphosphate in soilâ€and plantâ€related samples by highâ€performance ion chromatography combined with inductively coupled plasma mass spectrometry. Journal of Separation Science, 2014, 37, 1711-1719.	1.3	21
59	Root exudation of phytosiderophores from soilâ€grown wheat. New Phytologist, 2014, 203, 1161-1174.	3.5	124
60	Aided phytostabilization using Miscanthus sinensis \tilde{A} —giganteus on heavy metal-contaminated soils. Science of the Total Environment, 2014, 479-480, 125-131.	3.9	75
61	Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 2014, 379, 351-360.	1.8	93
62	Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 89, 60-65.	1.5	25
63	Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environmental and Experimental Botany, 2013, 87, 235-247.	2.0	94
64	The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry, 2013, 60, 182-194.	4.2	566
65	A novel flow-injection method for simultaneous measurement of platinum (Pt), palladium (Pd) and rhodium (Rh) in aqueous soil extracts of contaminated soil by ICP-OES. Journal of Analytical Atomic Spectrometry, 2013, 28, 354.	1.6	31
66	Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. Environmental Pollution, 2013, 178, 121-127.	3.7	47
67	Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction. Applied and Environmental Microbiology, 2013, 79, 5094-5103.	1.4	44
68	Aluminium–phosphate interactions in the rhizosphere of two bean species: <i>Phaseolus lunatus</i> L. and <i>Phaseolus vulgaris</i> L. Journal of the Science of Food and Agriculture, 2013, 93, 3891-3896.	1.7	12
69	Accumulation of Cadmium, Zinc, and Copper by <i>Helianthus Annuus </i> L: Impact on Plant Growth and Uptake of Nutritional Elements. International Journal of Phytoremediation, 2012, 14, 320-334.	1.7	43
70	Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Environmental Pollution, 2012, 170, 222-231.	3.7	54
71	Analysis of ironâ€phytosiderophore complexes in soil related samples: LCâ€ESIâ€MS/MS versus CEâ€MS. Electrophoresis, 2012, 33, 726-733.	1.3	27
72	High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L. cultivars. Environmental and Experimental Botany, 2012, 77, 219-226.	2.0	73

#	Article	IF	Citations
73	Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environmental Pollution, 2012, 163, 117-126.	3.7	121
74	Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Science of the Total Environment, 2012, 416, 490-500.	3.9	78
75	Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L Plant Physiology and Biochemistry, 2011, 49, 1272-1278.	2.8	68
76	Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere, 2011, 84, 1256-1261.	4.2	66
77	LC–MS analysis of low molecular weight organic acids derived from root exudation. Analytical and Bioanalytical Chemistry, 2011, 400, 2587-2596.	1.9	63
78	Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization. Plant and Soil, 2010, 332, 339-355.	1.8	39
79	Complexation of metals by phytosiderophores revealed by CEâ€ESIâ€MS and CEâ€ICPâ€MS. Electrophoresis, 2010, 31, 1201-1207.	1.3	36
80	Hydrophilic interaction LC combined with electrospray MS for highly sensitive analysis of underivatized amino acids in rhizosphere research. Journal of Separation Science, 2010, 33, 911-922.	1.3	38
81	Differentiation of metallicolous and nonâ€metallicolous <i>Salix caprea</i> populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers. Plant, Cell and Environment, 2010, 33, 1641-1655.	2.8	32
82	Developing decision support tools for the selection of "gentle―remediation approaches. Science of the Total Environment, 2009, 407, 6132-6142.	3.9	77
83	Interactive effects of organic acids in the rhizosphere. Soil Biology and Biochemistry, 2009, 41, 449-457.	4.2	149
84	Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil, 2008, 304, 35-44.	1.8	247
85	Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza, 2008, 18, 339-354.	1.3	59
86	Endophytes and Rhizosphere Bacteria of Plants Growing in Heavy Metal-Containing Soils. Soil Biology, 2008, , 317-332.	0.6	21
87	Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environmental Pollution, 2008, 153, 677-686.	3.7	48
88	Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 2007, 298, 255-264.	1.8	125
89	Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant and Soil, 2007, 300, 117-126.	1.8	25
90	Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov Systematic and Applied Microbiology, 2006, 29, 634-644.	1,2	81

#	Article	IF	CITATIONS
91	Root morphology ofThlaspi goesingenseHáIácsy grown on a serpentine soil. Journal of Plant Nutrition and Soil Science, 2005, 168, 138-144.	1.1	18
92	Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant and Soil, 2005, 271, 205-218.	1.8	96
93	Novel micro-suction-cup design for sampling soil solution at defined distances from roots. Journal of Plant Nutrition and Soil Science, 2005, 168, 386-391.	1.1	24
94	Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 2004, 70, 2667-2677.	1.4	477
95	Slow-Release Zeolite-Bound Zinc and Copper Fertilizers Affect Cadmium Concentration in Wheat and Spinach. Communications in Soil Science and Plant Analysis, 2003, 34, 31-40.	0.6	9
96	Chemical changes in the rhizosphere of metal hyperaccumulator and excluderThlaspi species. Journal of Plant Nutrition and Soil Science, 2003, 166, 579-584.	1.1	58
97	Phytoextraction of heavy metal contaminated soils withThlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate. Journal of Plant Nutrition and Soil Science, 2001, 164, 615-621.	1.1	88
98	Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant and Soil, 2001, 237, 37-45.	1.8	101