
Rocio Morales-Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5888020/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry, 2016, 194, 1208-1216.	8.2	120
2	A lumped model of the lipase catalyzed hydrolysis of sardine oil to maximize polyunsaturated fatty acids content in acylglycerols. Food Chemistry, 2018, 240, 286-294.	8.2	31
3	Production of resistant starch by enzymatic debranching in legume flours. Carbohydrate Polymers, 2014, 101, 1176-1183.	10.2	30
4	Development of an up-grading process to produce MLM structured lipids from sardine discards. Food Chemistry, 2017, 228, 634-642.	8.2	29
5	Discarded species in the west Mediterranean sea as sources of omegaâ€3 <scp>PUFA</scp> . European Journal of Lipid Science and Technology, 2013, 115, 982-989.	1.5	27
6	Effect of digestive enzymes on the bioactive properties of goat milk protein hydrolysates. International Dairy Journal, 2016, 54, 21-28.	3.0	21
7	Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea. Food and Function, 2015, 6, 1261-1267.	4.6	19
8	Multiobjective optimization of the antioxidant activities of horse mackerel hydrolysates produced with protease mixtures. Process Biochemistry, 2017, 52, 149-158.	3.7	17
9	Impact of microfluidization on the microstructure and functional properties of pea hull fibre. Food Hydrocolloids, 2020, 103, 105660.	10.7	17
10	Optimisation of oil extraction from sardine (<i><scp>S</scp>ardina pilchardus</i>) by hydraulic pressing. International Journal of Food Science and Technology, 2014, 49, 2167-2175.	2.7	16
11	Mass transfer modeling of sardine oil polyunsaturated fatty acid (PUFA) concentration by low temperature crystallization. Journal of Food Engineering, 2016, 183, 16-23.	5.2	16
12	Nutritional indexes, fatty acids profile, and regiodistribution of oil extracted from four discarded species of the Alboran Sea: Seasonal effects. European Journal of Lipid Science and Technology, 2016, 118, 1409-1415.	1.5	14
13	Modelling of the production of ACE inhibitory hydrolysates of horse mackerel using proteases mixtures. Food and Function, 2016, 7, 3890-3901.	4.6	13
14	Artificial neuronal network modeling of the enzymatic hydrolysis of horse mackerel protein using protease mixtures. Biochemical Engineering Journal, 2016, 105, 364-370.	3.6	11
15	Novozyme 435 and Lipozyme RM IM Preferably Esterify Polyunsaturated Fatty Acids at the snâ€2 Position. European Journal of Lipid Science and Technology, 2020, 122, 2000115.	1.5	10
16	Seasonal variations in the regiodistribution of oil extracted from small-spotted catshark and bogue. Food and Function, 2015, 6, 2646-2652.	4.6	9
17	Modulating the hydration properties of pea hull fibre by its composition as affected by mechanical processing and various extraction procedures. Food Hydrocolloids, 2020, 107, 105958.	10.7	6
18	Optimization of α-tocopherol and ascorbyl palmitate addition for the stabilization of sardine oil. Grasas Y Aceites, 2015, 66, e069.	0.9	5

#	Article	IF	CITATIONS
19	A Simple Enzymatic Process to Produce Functional Lipids From Vegetable and Fish Oil Mixtures. European Journal of Lipid Science and Technology, 2017, 119, 1700233.	1.5	5
20	Effect of the supplementation of live preys enriched in cod liver oil on the survival rate, growth and fatty acid profile of meagre (<i>Argyrosomus regius</i>) larvae. Aquaculture Research, 2018, 49, 1133-1141.	1.8	3
21	Fish Discards as Source of Health-Promoting Biopeptides. , 2018, , 177-204.		2