Johan A Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5887831/publications.pdf

Version: 2024-02-01

394421 345221 1,578 36 19 36 citations g-index h-index papers 49 49 49 2375 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget. Atmospheric Chemistry and Physics, 2017, 17, 6353-6371.	4.9	296
2	Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmospheric Chemistry and Physics, 2016, 16, 12239-12271.	4.9	231
3	Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,819.	3.3	106
4	Reviews and syntheses: Carbonyl sulfide as aÂmulti-scale tracer for carbon and water cycles. Biogeosciences, 2018, 15, 3625-3657.	3.3	98
5	Active and widespread halogen chemistry in the tropical and subtropical free troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9281-9286.	7.1	91
6	Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects. Proceedings of the National Academy of Sciences of the United States of America, 2013, 17691-17696.	7.1	73
7	Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets. Geophysical Research Letters, 2017, 44, 7069-7078.	4.0	60
8	SO ₂ photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17656-17661.	7.1	50
9	Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC ³² S, OC ³³ S, OC ³⁴ S and O ¹³ CS: isotopic fractionation photolysis and atmospheric implications. Atmospheric Chemistry and	4.9	45
10	Halogen chemistry reduces tropospheric O ₃ radiative forcing. Atmospheric Chemistry and Physics, 2017, 17, 1557-1569.	4.9	43
11	Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer. Atmospheric Chemistry and Physics, 2016, 16, 11433-11450.	4.9	41
12	Isotope effects in N& It; sub& gt; 2& It; /sub& gt; O photolysis from first principles. Atmospheric Chemistry and Physics, 2011, 11, 8965-8975.	4.9	36
13	Clumped isotope effects during OH and Cl oxidation of methane. Geochimica Et Cosmochimica Acta, 2017, 196, 307-325.	3.9	33
14	BrO and inferred Br _{<i>y</i>} profiles over the western Pacific: relevance of inorganic bromine sources and a Br _{<i>y</i>} minimum in the aged tropical tropopause layer. Atmospheric Chemistry and Physics, 2017, 17, 15245-15270.	4.9	33
15	Communication: Multi-state analysis of the OCS ultraviolet absorption including vibrational structure. Journal of Chemical Physics, 2012, 136, 131101.	3.0	29
16	The ultraviolet spectrum of OCS from first principles: Electronic transitions, vibrational structure and temperature dependence. Journal of Chemical Physics, 2012, 137, 054313.	3.0	26
17	OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere. Atmospheric Chemistry and Physics, 2013, 13, 1511-1520.	4.9	25
18	Photodissociation of N2O: Energy partitioning. Journal of Chemical Physics, 2011, 135, 024311.	3.0	24

#	Article	IF	CITATIONS
19	Enhanced ozone loss by active inorganic bromine chemistry in the tropical troposphere. Atmospheric Environment, 2017, 155, 21-28.	4.1	24
20	Ultraviolet photodissociation of OCS: Product energy and angular distributions. Journal of Chemical Physics, 2013, 138, 094314.	3.0	21
21	Isotope Effect in the Carbonyl Sulfide Reaction with O(³ <i>P</i>). Journal of Physical Chemistry A, 2012, 116, 3521-3526.	2.5	20
22	Predictions of the sulfur and carbon kinetic isotope effects in the OH + OCS reaction. Chemical Physics Letters, 2012, 531, 64-69.	2.6	17
23	Global modeling of tropospheric iodine aerosol. Geophysical Research Letters, 2016, 43, 10012-10019.	4.0	17
24	Photodissociation of N2O: Triplet states and triplet channel. Journal of Chemical Physics, 2011, 135, 194303.	3.0	16
25	A three-dimensional model of the atmospheric chemistry of E and Z-CF3CH=CHCl (HCFO-1233(zd) (E/Z)). Atmospheric Environment, 2018, 179, 250-259.	4.1	16
26	Hydrogen shift reactions in four methyl-buten-ol (MBO) peroxy radicals and their impact on the atmosphere. Atmospheric Environment, 2016, 147, 79-87.	4.1	15
27	Photodissociation of OCS: Deviations between theory and experiment, and the importance of higher order correlation effects. Journal of Chemical Physics, 2014, 141, 184310.	3.0	13
28	Clumped isotope perturbation in tropospheric nitrous oxide from stratospheric photolysis. Geophysical Research Letters, 2015, 42, 3546-3552.	4.0	13
29	Recoil Inversion in the Photodissociation of Carbonyl Sulfide near 234Ânm. Physical Review Letters, 2017, 118, 253001.	7.8	11
30	Kinetic isotope effects of ¹² CH ₃ D  + OH and ¹³ CH ₃ D  + OH from 313 K. Atmospheric Chemistry and Physics, 2016, 16, 4439-4449.	l n ⁴ 278 to	7
31	On the origin of the asymmetric shape of the HCl photodissociation cross section. Chemical Physics Letters, 2009, 480, 168-172.	2.6	6
32	Photodissociation of N ₂ O: Excitation of ¹ A″ States. Journal of Physical Chemistry A, 2012, 116, 11083-11087.	2.5	6
33	On the structure of Si(100) surface: Importance of higher order correlations for buckled dimer. Journal of Chemical Physics, 2013, 138, 204709.	3.0	6
34	Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d ₂ . Atmospheric Chemistry and Physics, 2014, 14, 551-558.	4.9	6
35	Exit-channel recoil resonances by imaging the photodissociation of single quantum-state-selected OCS molecules. Physical Review A, 2018, 98, .	2.5	5
36	On adduct formation and reactivity in the OCS + OH reaction: A combined theoretical and experimental study. Chemical Physics Letters, 2017, 675, 111-117.	2.6	2