Rafael Soares Lindoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5887679/publications.pdf

Version: 2024-02-01

949033 939365 18 759 11 18 citations g-index h-index papers 20 20 20 1535 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production. International Journal of Molecular Sciences, 2022, 23, 2906.	1.8	1
2	Differentiated kidney tubular cell-derived extracellular vesicles enhance maturation of tubuloids. Journal of Nanobiotechnology, 2022, 20, .	4.2	4
3	Extracellular Vesicles as a Therapeutic Tool for Kidney Disease: Current Advances and Perspectives. International Journal of Molecular Sciences, 2021, 22, 5787.	1.8	19
4	Adipose Mesenchymal Cells-Derived EVs Alleviate DOCA-Salt-Induced Hypertension by Promoting Cardio-Renal Protection. Molecular Therapy - Methods and Clinical Development, 2020, 16, 63-77.	1.8	27
5	Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 1122.	1.3	18
6	Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms. Future Science OA, 2020, 6, FSO627.	0.9	13
7	Acute Myocardial Infarction Reduces Respiration in Rat Cardiac Fibers, despite Adipose Tissue Mesenchymal Stromal Cell Transplant. Stem Cells International, 2020, 2020, 1-19.	1.2	6
8	Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model. Cells, 2020, 9, 453.	1.8	29
9	Type 2 diabetes mellitus alters cardiac mitochondrial content and function in a non-obese mice model. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20191340.	0.3	6
10	Proteomics in the World of Induced Pluripotent Stem Cells. Cells, 2019, 8, 703.	1.8	10
11	Adipose-Derived Mesenchymal Stromal Cells Under Hypoxia: Changes in Extracellular Vesicles Secretion and Improvement of Renal Recovery after Ischemic Injury. Cellular Physiology and Biochemistry, 2019, 52, 1463-1483.	1.1	44
12	Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells. Stem Cell Reviews and Reports, 2017, 13, 226-243.	5.6	129
13	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	1.6	159
14	Extracellular vesicles as regulators of tumor fate: crosstalk among cancer stem cells, tumor cells and mesenchymal stem cells. Stem Cell Investigation, 2017, 4, 75-75.	1.3	54
15	Proteomics of cell–cell interactions in health and disease. Proteomics, 2016, 16, 328-344.	1.3	12
16	Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells. Oncotarget, 2015, 6, 7959-7969.	0.8	77
17	Extracellular Vesicles Released from Mesenchymal Stromal Cells Modulate miRNA in Renal Tubular Cells and Inhibit ATP Depletion Injury. Stem Cells and Development, 2014, 23, 1809-1819.	1.1	121
18	Paracrine Interaction between Bone Marrow-derived Stem Cells and Renal Epithelial Cells. Cellular Physiology and Biochemistry, 2011, 28, 267-278.	1.1	30