
Jing-Bo Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5887314/publications.pdf Version: 2024-02-01

Ιινις-Βο Υμ

#	Article	IF	CITATIONS
1	Mechanochemical Câ^'X/Câ^'H Functionalization: An Alternative Strategic Access to Pharmaceuticals. European Journal of Organic Chemistry, 2022, 2022, .	2.4	23
2	Front Cover: Mechanochemical Câ^'X/Câ^'H Functionalization: An Alternative Strategic Access to Pharmaceuticals (Eur. J. Org. Chem. 8/2022). European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
3	Generation of aryl radicals from <i>in situ</i> activated homolytic scission: driving radical reactions by ball milling. Green Chemistry, 2022, 24, 4557-4565.	9.0	10
4	Mechanically induced solvent-free esterification method at room temperature. RSC Advances, 2021, 11, 5080-5085.	3.6	4
5	Liquidâ€Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis and Catalysis, 2021, 363, 1246-1271.	4.3	170
6	Inositol hexanicotinate self-micelle solid dispersion is an efficient drug delivery system in the mouse model of non-alcoholic fatty liver disease. International Journal of Pharmaceutics, 2021, 602, 120576.	5.2	6
7	Preparation of camptothecin micelles self-assembled from disodium glycyrrhizin and tannic acid with enhanced antitumor activity. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164, 75-85.	4.3	18
8	High yielding, one-step mechano-enzymatic hydrolysis of cellulose to cellulose nanocrystals without bulk solvent. Bioresource Technology, 2021, 331, 125015.	9.6	22
9	Mechanochemical Magnesium-Mediated Minisci C–H Alkylation of Pyrimidines with Alkyl Bromides and Chlorides. Organic Letters, 2021, 23, 6423-6428.	4.6	27
10	Two approaches for the synthesis of levo-praziquantel. Organic and Biomolecular Chemistry, 2021, 19, 4507-4514.	2.8	10
11	Mechanochemical Asymmetric Crossâ€Dehydrogenative Coupling Reaction: Liquidâ€Assisted Grinding Enables Reaction Acceleration and Enantioselectivity Control. Advanced Synthesis and Catalysis, 2020, 362, 893-902.	4.3	21
12	Palladium-Catalyzed C–H/C–H Cross-Coupling by Mechanochemistry: Direct Alkenylation and Heteroarylation of N1-Protected 1 <i>H</i> -Indazoles. Journal of Organic Chemistry, 2020, 85, 1009-1021.	3.2	31
13	Mechanochemical Oxidative Heck Coupling of Activated and Unactivated Alkenes: A Chemoâ€, Regio―and Stereoâ€Controlled Synthesis of Alkenylbenzenes. Advanced Synthesis and Catalysis, 2019, 361, 5133-5139.	4.3	20
14	Decarboxylative acylation of <i>N</i> -free indoles enabled by a catalytic amount of copper catalyst and liquid-assisted grinding. Organic and Biomolecular Chemistry, 2019, 17, 4446-4451.	2.8	27
15	Effects of anthraquinones from Cassia occidentalis L. on ovalbumin-induced airways inflammation in a mouse model of allergic asthma. Journal of Ethnopharmacology, 2018, 221, 1-9.	4.1	33
16	Extraction, partial characterization and bioactivity of polysaccharides from Senecio scandens BuchHam. International Journal of Biological Macromolecules, 2018, 109, 535-543.	7.5	14
17	Bromide-assisted chemoselective Heck reaction of 3-bromoindazoles under high-speed ball-milling conditions: synthesis of axitinib. Beilstein Journal of Organic Chemistry, 2018, 14, 786-795.	2.2	23
18	Mechanochemical preparation of kaempferol intermolecular complexes for enhancing the solubility and bioavailability. Drug Development and Industrial Pharmacy, 2018, 44, 1924-1932.	2.0	15

Jing-Bo Yu

#	Article	IF	CITATIONS
19	Encaging palladium(0) in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill. Beilstein Journal of Organic Chemistry, 2017, 13, 1661-1668.	2.2	14
20	An Efficient Synthesis of 2-Vinyl Furans/Thiophenes: Oxidative Heck Coupling under High-Speed Ball-Milling Conditions. Chinese Journal of Organic Chemistry, 2017, 37, 1473.	1.3	2
21	Selective Extraction of Gardenia Yellow and Geniposide from Gardenia jasminoides by Mechanochemistry. Molecules, 2016, 21, 540.	3.8	19
22	Selective Extraction of Flavonoids from Sophora flavescens Ait. by Mechanochemistry. Molecules, 2016, 21, 989.	3.8	16
23	Liquid-Assisted Grinding Accelerating: Suzuki–Miyaura Reaction of Aryl Chlorides under High-Speed Ball-Milling Conditions. Journal of Organic Chemistry, 2016, 81, 10049-10055.	3.2	100
24	Extraction, characterization, and biological activity of polysaccharides from Sophora flavescens Ait International Journal of Biological Macromolecules, 2016, 93, 459-467.	7.5	26
25	Mechanically Induced Fe(III) Catalysis at Room Temperature: Solvent-Free Cross-Dehydrogenative Coupling of 3-Benzylic Indoles with Methylenes/Indoles. Journal of Organic Chemistry, 2016, 81, 11514-11520.	3.2	47
26	Mechanochemical Oxidative Mannich Reaction: Evaluation of Chemical and Mechanical Parameters for the Mild and Chemoselective Coupling of <i>N</i> â€ <i>tert</i> â€butoxycarbonyltetrahydroquinolines and Ketones. European Journal of Organic Chemistry, 2016, 2016, 5340-5344.	2.4	23
27	Mechanochemically Activated Oxidative Coupling of Indoles with Acrylates through C–H Activation: Synthesis of 3-Vinylindoles and β,β-Diindolyl Propionates and Study of the Mechanism. Journal of Organic Chemistry, 2016, 81, 6049-6055.	3.2	71
28	Mechanically activated ring-opening reactions of N-acyl-1,2,3,4-tetrahydroisoquinolines derived from the synthesis ofÂpraziquantel intermediate. Tetrahedron, 2015, 71, 6116-6123.	1.9	9
29	Fast, solvent-free asymmetric alkynylation of prochiral sp3 C–H bonds in a ball mill for the preparation of optically active tetrahydroisoquinoline derivatives. Tetrahedron Letters, 2013, 54, 2006-2009.	1.4	87
30	Synthesis of Quinolines by <i>N</i> -Deformylation and Aromatization via Solvent-Free, High-Speed Ball Milling. Synthetic Communications, 2013, 43, 361-374.	2.1	16
31	Solvent-Free Cross-Dehydrogenative Coupling Reactions under High Speed Ball-Milling Conditions Applied to the Synthesis of Functionalized Tetrahydroisoquinolines. Journal of Organic Chemistry, 2011, 76, 9144-9150.	3.2	151
32	Unexpected and Divergent Reactions of N-Formyl-1,2-dihydroquinolines with Sodium Azide: Highly Chemoselective Formation of 2-Substituted Quinolines and Isoxazolo[4,3-c]quinolines. Synlett, 2010, 2010, 1281-1284.	1.8	7