Naoki Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588663/publications.pdf Version: 2024-02-01

NAOKI SATO

#	Article	IF	CITATIONS
1	Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 2004, 428, 653-657.	13.7	1,016
2	Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nature Communications, 2014, 5, 3978.	5.8	532
3	A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biology, 2007, 5, 28.	1.7	269
4	The Mitochondrial Genome of the Moss Physcomitrella patens Sheds New Light on Mitochondrial Evolution in Land Plants. Molecular Biology and Evolution, 2007, 24, 699-709.	3.5	143
5	Digalactosyldiacylglycerol Is Required for Stabilization of the Oxygen-Evolving Complex in Photosystem II. Plant Physiology, 2007, 145, 1361-1370.	2.3	124
6	[24] Membrane lipids. Methods in Enzymology, 1988, 167, 251-259.	0.4	122
7	Identification of Substrain-Specific Mutations by Massively Parallel Whole-Genome Resequencing of Synechocystis sp. PCC 6803. DNA Research, 2012, 19, 67-79.	1.5	119
8	Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis. Lipids and Lipid Metabolism, 1980, 619, 353-366.	2.6	114
9	Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Research, 2010, 17, 85-103.	1.5	107
10	Nucleotide sequence and expression of the phytochrome gene in Pisum sativum: Differential regulation by light of multiple transcripts. Plant Molecular Biology, 1988, 11, 697-710.	2.0	105
11	Genome-wide Expression Analysis of the Responses to Nitrogen Deprivation in the Heterocyst-forming Cyanobacterium Anabaena sp. Strain PCC 7120. DNA Research, 2003, 10, 97-113.	1.5	104
12	Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: Probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Research, 1999, 27, 2029-2036.	6.5	96
13	Genomic and Biochemical Analysis of Lipid Biosynthesis in the Unicellular Rhodophyte Cyanidioschyzon merolae: Lack of a Plastidic Desaturation Pathway Results in the Coupled Pathway of Galactolipid Synthesis. Eukaryotic Cell, 2007, 6, 1006-1017.	3.4	88
14	Was the evolution of plastid genetic machinery discontinuous?. Trends in Plant Science, 2001, 6, 151-155.	4.3	83
15	Molecular Characterization of the PEND Protein, a Novel bZIP Protein Present in the Envelope Membrane That Is the Site of Nucleoid Replication in Developing Plastids. Plant Cell, 1998, 10, 859-872.	3.1	80
16	Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 250-261.	2.8	76
17	Organization, Developmental Dynamics, and Evolution of Plastid Nucleoids. International Review of Cytology, 2003, 232, 217-262.	6.2	72
18	Betaine lipids. Botanical Magazine, 1992, 105, 185-197.	0.6	67

Ναοκι Sato

#	Article	IF	CITATIONS
19	Distribution of diacylglyceryltrimethylhomoserine and phosphatidylcholine in non-vascular green plants. Plant Science, 1985, 38, 81-85.	1.7	65
20	Lipid-Linked Desaturation of Palmitic Acid in Monogalactosyl Diacylglycerol in the Blue-Green Alga (Cyanobacterium) Anabaena variabilis Studied in Vivo. Plant and Cell Physiology, 1986, 27, 819-835.	1.5	64
21	Reversible DNA Compaction by Sulfite Reductase Regulates Transcriptional Activity of Chloroplast Nucleoids. Journal of Biological Chemistry, 2002, 277, 24399-24404.	1.6	63
22	Cloning and Characterization of Glycine-Rich RNA-Binding Protein cDNAs in the Moss Physcomitrella patens. Plant and Cell Physiology, 2004, 45, 48-56.	1.5	62
23	ppdb: plant promoter database version 3.0. Nucleic Acids Research, 2014, 42, D1188-D1192.	6.5	61
24	Algal Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase, Triacylglycerol Accumulation Regulator1, Regulates Accumulation of Triacylglycerol in Nitrogen or Sulfur Deficiency. Plant Physiology, 2015, 168, 752-764.	2.3	61
25	Oxygenic photosynthesis without galactolipids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13571-13575.	3.3	60
26	Identification and Characterization of Two Phage-Type RNA Polymerase cDNAs in the Moss Physcomitrella patens: Implication of Recent Evolution of Nuclear-Encoded RNA Polymerase of Plastids in Plants. Plant and Cell Physiology, 2002, 43, 245-255.	1.5	55
27	Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Frontiers in Plant Science, 2014, 5, 480.	1.7	55
28	Unique Translation Initiation at the Second AUG Codon Determines Mitochondrial Localization of the Phage-Type RNA Polymerases in the Moss Physcomitrella patens. Plant Physiology, 2005, 138, 369-382.	2.3	54
29	The Assembly of the FtsZ Ring at the Mid-Chloroplast Division Site Depends on a Balance Between the Activities of AtMinE1 and ARC11/AtMinD1. Plant and Cell Physiology, 2008, 49, 345-361.	1.5	54
30	A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21. Plant Molecular Biology, 1994, 24, 819-823.	2.0	53
31	Visualization of Plastid Nucleoids In situ Using the PEND–GFP Fusion Protein. Plant and Cell Physiology, 2005, 46, 649-660.	1.5	53
32	Distribution of diacylglyceryltrimethylhomoserine in selected species of vascular plants. Phytochemistry, 1984, 23, 1625-1627.	1.4	51
33	DNA binding and partial nucleoid localization of the chloroplast stromal enzyme ferredoxin:sulfite reductase. FEBS Journal, 2007, 274, 2054-2069.	2.2	50
34	Distribution of Diacylglycerylhydroxymethyltrimethyl-β-alanine (DGTA) and Phosphatidylcholine in Brown Algae. Plant and Cell Physiology, 1991, 32, 623-628.	1.5	49
35	Molecular Phylogeny and Intricate Evolutionary History of the Three Isofunctional Enzymes Involved in the Oxidation of Protoporphyrinogen IX. Genome Biology and Evolution, 2014, 6, 2141-2155.	1.1	49
36	The 70-kDa major DNA-compacting protein of the chloroplast nucleoid is sulfite reductase. FEBS Letters, 2001, 487, 347-350.	1.3	46

ΝΑΟΚΙ SΑΤΟ

#	Article	IF	CITATIONS
37	Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum. Journal of Plant Research, 2014, 127, 389-397.	1.2	45
38	Analysis of Lipids in Prochloron sp.: Occurrence of Monoglucosyl Diacylglycerol. Plant and Cell Physiology, 1983, 24, 133-138.	1.5	44
39	Gclust: <i>trans</i> -kingdom classification of proteins using automatic individual threshold setting. Bioinformatics, 2009, 25, 599-605.	1.8	42
40	Genomic Structure of the Cyanobacterium Synechocystis sp. PCC 6803 Strain GT-S. DNA Research, 2011, 18, 393-399.	1.5	42
41	Revisiting the Algal "Chloroplast Lipid Droplet― The Absence of an Entity That Is Unlikely to Exist. Plant Physiology, 2018, 176, 1519-1530.	2.3	41
42	Phylogenomic and structural modeling analyses of the PsbP superfamily reveal multiple small segment additions in the evolution of photosystem II-associated PsbP protein in green plants. Molecular Phylogenetics and Evolution, 2010, 56, 176-186.	1.2	40
43	Conservation of POPs, the Plant Organellar DNA Polymerases, in Eukaryotes. Protist, 2011, 162, 177-187.	0.6	39
44	Very-long-chain saturated fatty acids in phosphatidylserine from higher plant tissues. Lipids and Lipid Metabolism, 1984, 795, 147-150.	2.6	38
45	Isolation and characterization of novel genes which are expressed during the very early stage of zygote formation in Chlamydomonas reinhardtii. Current Genetics, 1993, 24, 296-300.	0.8	38
46	Detailed Identification of Fatty Acid Isomers Sheds Light on the Probable Precursors of Triacylglycerol Accumulation in Photoautotrophically Grown Chlamydomonas reinhardtii. Eukaryotic Cell, 2014, 13, 256-266.	3.4	35
47	Do plastid envelope membranes play a role in the expression of the plastid genome?. Biochimie, 1999, 81, 619-629.	1.3	34
48	Orthogenomics of Photosynthetic Organisms: Bioinformatic and Experimental Analysis of Chloroplast Proteins of Endosymbiont Origin in Arabidopsis and Their Counterparts in Synechocystis. Plant and Cell Physiology, 2009, 50, 773-788.	1.5	34
49	Dual Role of Methionine in the Biosynthesis of Diacylglyceryltrimethylhomoserine in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 1988, 86, 931-934.	2.3	33
50	Purification and characterization of organellar DNA polymerases in the red alga <i>Cyanidioschyzon merolae</i> . FEBS Journal, 2008, 275, 2899-2918.	2.2	33
51	Analysis and biosynthesis of in the cells of Marchantia in suspension culture. Plant Science, 1988, 55, 21-25.	1.7	32
52	Transition of lipid phase in aqueous dispersions of diacylglyceryltrimethylhomoserine. Lipids and Lipid Metabolism, 1991, 1082, 108-111.	2.6	32
53	Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World Journal of Microbiology and Biotechnology, 2017, 33, 74.	1.7	32
54	DNA-binding specificity and dimerization of the DNA-binding domain of the PEND protein in the chloroplast envelope membrane. Nucleic Acids Research, 2001, 29, 2244-2250.	6.5	31

#	Article	IF	CITATIONS
55	Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms). Current Genetics, 2016, 62, 887-896.	0.8	31
56	Phytochrome control of multiple transcripts of the phytochrome gene in Pisum sativum. Plant Molecular Biology, 1989, 12, 295-299.	2.0	30
57	SISEQ: manipulation of multiple sequence and large database files for common platforms. Bioinformatics, 2000, 16, 180-181.	1.8	30
58	Mass identification of chloroplast proteins of endosymbiont origin by phylogenetic profiling based on organism-optimized homologous protein groups. Genome Informatics, 2005, 16, 56-68.	0.4	30
59	Live Imaging of Chloroplast FtsZ1 Filaments, Rings, Spirals, and Motile Dot Structures in the AtMinE1 Mutant and Overexpressor of Arabidopsis thaliana. Plant and Cell Physiology, 2009, 50, 1116-1126.	1.5	29
60	Lack of digalactosyldiacylglycerol increases the sensitivity of <i>Synechocystis</i> sp. PCC 6803 to high light stress. FEBS Letters, 2009, 583, 718-722.	1.3	29
61	Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. Planta, 2014, 240, 585-598.	1.6	29
62	Preparation of chlorophyll a, chlorophyll b and bacteriochlorophyll a by means of column chromatography with diethylaminoethylcellulose. Biochimica Et Biophysica Acta - Bioenergetics, 1978, 501, 103-111.	0.5	28
63	GenoMap, a circular genome data viewer. Bioinformatics, 2003, 19, 1583-1584.	1.8	28
64	Diverse origins of enzymes involved in the biosynthesis of chloroplast peptidoglycan. Journal of Plant Research, 2017, 130, 635-645.	1.2	28
65	Modulation of lipid and fatty acid content by carbon dioxide in Chlamydomonas reinhardtii. Plant Science, 1989, 61, 17-21.	1.7	27
66	Analysis of the Cluster of Ribosomal Protein Genes in the Plastid Genome of a Unicellular Red Alga Cyanidioschyzon merolae: Translocation of the str Cluster as an Early Event in the Rhodophyte-Chromophyte Lineage of Plastid Evolution. Journal of Molecular Evolution, 1997, 45, 688-695.	0.8	27
67	The composition of lipids and fatty acids determined at various stages of haploid and diploid generations in the fern Adiantum capillus-veneris. Physiologia Plantarum, 1984, 62, 139-147.	2.6	26
68	Involvement of digalactosyldiacylglycerol in cellular thermotolerance in Synechocystis sp. PCC 6803. Archives of Microbiology, 2009, 191, 595-601.	1.0	26
69	Diversity in Biosynthetic Pathways of Galactolipids in the Light of Endosymbiotic Origin of Chloroplasts. Frontiers in Plant Science, 2016, 7, 117.	1.7	26
70	The trpA gene on the plastid genome of Cyanidium caldarium strain RK-1. Current Genetics, 1994, 25, 357-361.	0.8	25
71	Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae. Frontiers in Plant Science, 2016, 7, 958.	1.7	25
72	Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids. Advances in Photosynthesis and Respiration, 2007, , 75-102.	1.0	25

#	Article	IF	CITATIONS
73	Signal Transduction Genes Required for Heterocyst Maturation in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2006, 188, 6688-6693.	1.0	24
74	Is Monoglucosyldiacylglycerol a Precursor to Monogalactosyldiacylglycerol in All Cyanobacteria?. Plant and Cell Physiology, 2015, 56, 1890-1899.	1.5	24
75	"Prokaryotic Pathway―Is Not Prokaryotic: Noncyanobacterial Origin of the Chloroplast Lipid Biosynthetic Pathway Revealed by Comprehensive Phylogenomic Analysis. Genome Biology and Evolution, 2017, 9, 3162-3178.	1.1	24
76	Analysis of a plastid gene cluster reveals a close relationship betweenCyanidioschyzon andCyanidium. Journal of Plant Research, 1997, 110, 235-245.	1.2	23
77	Localization and Phylogenetic Analysis of Enzymes Related to Organellar Genome Replication in the Unicellular Rhodophyte Cyanidioschyzon merolae. Genome Biology and Evolution, 2014, 6, 228-237.	1.1	23
78	Mutations in Four Regulatory Genes Have Interrelated Effects on Heterocyst Maturation in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2006, 188, 7387-7395.	1.0	22
79	CyanoClust: comparative genome resources of cyanobacteria and plastids. Database: the Journal of Biological Databases and Curation, 2010, 2010, bap025-bap025.	1.4	22
80	Diverse pathways of phosphatidylcholine biosynthesis in algae as estimated by labeling studies and genomic sequence analysis. Plant Journal, 2016, 87, 281-292.	2.8	22
81	Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event?. Journal of Plant Research, 2020, 133, 15-33.	1.2	22
82	Use of segment-based microarray in the analysis of global gene expression in response to various environmental stresses in the cyanobacterium Anabaena sp. PCC 7120. Journal of General and Applied Microbiology, 2004, 50, 1-8.	0.4	22
83	Methylation of DNA in the chloroplasts and amyloplasts of the pea, Pisum sativum. Plant Science, 1991, 78, 33-42.	1.7	21
84	Are Cyanobacteria an Ancestor of Chloroplasts or Just One of the Gene Donors for Plants and Algae?. Genes, 2021, 12, 823.	1.0	21
85	Cloning of a low-temperature-induced genelti2 from the cyanobacteriumAnabaena variabilis M3 that is homologous to ?-amylases. Plant Molecular Biology, 1992, 18, 165-170.	2.0	20
86	Early candidacy for differentiation into heterocysts in the filamentous cyanobacterium Anabaena sp. PCC 7120. Archives of Microbiology, 2010, 192, 23-31.	1.0	20
87	Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. SpringerPlus, 2015, 4, 559.	1.2	20
88	Disruption Analysis of the Gene for a Cold-Regulated RNA-Binding Protein, rbpA1, in Anabaena: Cold-Induced Initiation of the Heterocyst Differentiation Pathway. Plant and Cell Physiology, 1996, 37, 1150-1160.	1.5	19
89	Characterization and Biosynthesis of Lipids in Paulinella micropora MYN1: Evidence for Efficient Integration of Chromatophores into Cellular Lipid Metabolism. Plant and Cell Physiology, 2020, 61, 869-881.	1.5	19
90	Conserved temperature-dependent expression of RNA-binding proteins in cyanobacteria with different temperature optima. FEMS Microbiology Letters, 2003, 225, 137-142.	0.7	18

#	Article	IF	CITATIONS
91	A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in the unicellular red alga <i>Cyanidioschyzon merolae</i> . Biochemical Journal, 2009, 423, 91-98.	1.7	18
92	Analysis of triacylglycerol accumulation under nitrogen deprivation in the red alga Cyanidioschyzon merolae. Microbiology (United Kingdom), 2016, 162, 803-812.	0.7	18
93	Studies on the absorption spectra of chlorophyll a in aqueous dispersions of lipids from the photosynthetic membranes. Plant and Cell Physiology, 1978, 19, 401-410.	1.5	17
94	Involvement of the 5'-untranslated region in cold-regulated expression of the rbpA1 gene in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Research, 1998, 26, 2192-2199.	6.5	17
95	Characterization of the mitochondrial nad7 gene in Physcomitrella patens: Similarity with angiosperm nad7 genes. Plant Science, 2001, 160, 807-815.	1.7	17
96	Dynamic morphologies of pollen plastids visualised by vegetative-specific FtsZ1–GFP in Arabidopsis thaliana. Protoplasma, 2010, 242, 19-33.	1.0	17
97	Characterization of cell-cycle-driven and light-driven gene expression in a synchronous culture system in the unicellular rhodophyte Cyanidioschyzon merolae. Microbiology (United Kingdom), 2010, 156, 1730-1737.	0.7	17
98	Draft Genome Sequences of Four Species of <i>Chlamydomonas</i> Containing Phosphatidylcholine. Genome Announcements, 2016, 4, .	0.8	17
99	Identification of Low-temperature-regulated ORFs in the Cyanobacterium Anabaena sp. Strain PCC 7120: Distinguishing the Effects of Low Temperature from the Effects of Photosystem II Excitation Pressure. Plant and Cell Physiology, 2005, 46, 1237-1245.	1.5	16
100	Single-Pixel Densitometry Revealed the Presence of Peptidoglycan in the Intermembrane Space of the Moss Chloroplast Envelope in Conventional Electron Micrographs. Plant and Cell Physiology, 2017, 58, 1743-1751.	1.5	16
101	Effect of pH on Absorption Spectra of Pea 114 and 121 Kilodalton Phytochromes during and after Red-Light Irradiation. Plant and Cell Physiology, 1986, 27, 765-773.	1.5	15
102	Crystal structure and dynamic properties of a bimetallic cyano complex Cd(C4H8O2)Cu(CN)3 with an interpenetrating 3D framework containing a 1,4-dioxane bridging ligand as a rotor. Dalton Transactions, 2007, , 1115.	1.6	15
103	Plastid localization of the PEND protein is mediated by a noncanonical transit peptide. FEBS Journal, 2009, 276, 1709-1719.	2.2	15
104	Scientific Élan Vital: Entropy Deficit or Inhomogeneity as a Unified Concept of Driving Forces of Life in Hierarchical Biosphere Driven by Photosynthesis. Entropy, 2012, 14, 233-251.	1.1	15
105	Comparative analysis of the genomes of cyanobacteria and plants. Genome Informatics, 2002, 13, 173-82.	0.4	15
106	The all0458/lti46.2 gene encodes a low temperature-induced Dps protein homologue in the cyanobacteria Anabaena sp. PCC 7120 and Anabaena variabilis M3. Microbiology (United Kingdom), 2012, 158, 2527-2536.	0.7	14
107	Occurrence and characterization of PEND proteins in angiosperms. Journal of Plant Research, 2005, 118, 111-119.	1.2	13
108	Detection and characterization of phosphatidylcholine in various strains of the genus Chlamydomonas (Volvocales, Chlorophyceae). Journal of Plant Research. 2014. 127. 641-650.	1.2	13

#	Article	IF	CITATIONS
109	Characterization of phosphoethanolamine-N-methyltransferases in green algae. Biochemical and Biophysical Research Communications, 2017, 488, 141-146.	1.0	13
110	Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases. Journal of Molecular Evolution, 2018, 86, 68-76.	0.8	12
111	High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown <i>Chlamydomonas debaryana</i> NIES-2212. Plant and Cell Physiology, 2015, 56, 2447-2456.	1.5	11
112	Revisiting the theoretical basis of the endosymbiotic origin of plastids in the original context of Lynn Margulis on the origin of mitosing, eukaryotic cells. Journal of Theoretical Biology, 2017, 434, 104-113.	0.8	11
113	Cellular Dynamics Drives the Emergence of Supracellular Structure in the Cyanobacterium, Phormidium sp. KS. Life, 2014, 4, 819-836.	1.1	10
114	Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium <i>Anabaena</i> sp. PCC 7120. Bioscience, Biotechnology and Biochemistry, 2015, 79, 767-774.	0.6	10
115	Formation of Spherical Palmelloid Colony with Enhanced Lipid Accumulation by Gel Encapsulation of Chlamydomonas debaryana NIES-2212. Plant and Cell Physiology, 2020, 61, 158-168.	1.5	10
116	Statistics of N-terminal alignment as a guide for refining prokaryotic gene annotation. Genomics, 2012, 99, 138-143.	1.3	9
117	Isotopic Combinatomer Analysis Provides <i>in Vivo</i> Evidence of the Direct Epimerization of Monoglucosyl Diacylglycerol in Cyanobacteria. Biochemistry, 2016, 55, 5689-5701.	1.2	8
118	Nucleotide sequence of a pseudogene for pea phytochrome reminiscent of an incorrect splicing event. Nucleic Acids Research, 1990, 18, 3632-3632.	6.5	7
119	Role of the 5′-UTR in accumulation of therbpA1transcript at low temperature in the cyanobacteriumAnabaena variabilisM3. FEMS Microbiology Letters, 2005, 251, 91-98.	0.7	7
120	Dynamism of Metabolic Carbon Flow of Starch and Lipids in Chlamydomonas debaryana. Frontiers in Plant Science, 2021, 12, 646498.	1.7	7
121	Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga <i>Cyanidioschyzon merolae</i> . FEBS Open Bio, 2019, 9, 114-128.	1.0	6
122	Development of 13 polymorphic chloroplast DNA markers in Quercus gilva, a regionally endemic species in Japan. Conservation Genetics Resources, 2014, 6, 961-965.	0.4	5
123	Selective loss of photosystem I and formation of tubular thylakoids in heterotrophically grown red alga Cyanidioschyzon merolae. Photosynthesis Research, 2019, 140, 275-287.	1.6	5
124	Identification of a cold-regulated RNA-binding protein from the marine cyanobacteriumSynechococcus sp. PCC7002. Journal of Plant Research, 1997, 110, 405-410.	1.2	4
125	Elucidating Genome Structure Evolution by Analysis of Isoapostatic Gene Clusters using Statistics of Variance of Gene Distances. Genome Biology and Evolution, 2010, 2, 1-12.	1.1	4
126	Complete Genome Sequence of the Nonheterocystous Cyanobacterium <i>Pseudanabaena</i> sp. ABRG5-3. Genome Announcements, 2018, 6, .	0.8	4

#	ARTICLE	IF	CITATIONS
127	Analysis and modeling of the inverted bioconvection in Chlamydomonas reinhardtii: emergence of plumes from the layer of accumulated cells. Heliyon, 2018, 4, e00586.	1.4	4
128	Reduced cytotoxicity of polyethyleneimine by covalent modification of antioxidant and its application to microalgal transformation. Science and Technology of Advanced Materials, 2021, 22, 864-874.	2.8	4
129	Optimization of triacylglycerol and starch production in Chlamydomonas debaryana NIES-2212 with regard to light intensity and CO2 concentration. Microbiology (United Kingdom), 2018, 164, 359-368.	0.7	4
130	Lipids in <italic>Cryptomonas</italic> CR-1. I. Occurrence of Betaine Lipids. Plant and Cell Physiology, 0, , .	1.5	3
131	Comparative Restriction Endonuclease Analysis of Rhodoplast DNA from Different Species of Porphyra(Bangiales, Rhodophyta) Nippon Suisan Gakkaishi, 1992, 58, 477-480.	0.0	3
132	NMR backbone assignments of the cold-regulated RNA-binding protein, rbpA1, in the cyanobacterium, anabaena variabilis M3. Journal of Biomolecular NMR, 2000, 17, 351-352.	1.6	3
133	The Organellar Genomes of Cyanidioschyzon merolae. , 1999, , 139-149.		3
134	Draft Whole-Genome Sequence of <i>Triparma laevis</i> f. <i>inornata</i> (Parmales, Bolidophyceae), Isolated from the Oyashio Region, Western North Pacific Ocean. Microbiology Resource Announcements, 2020, 9, .	0.3	3
135	Characterization of two ferredoxin-dependent sulfite reductases having different substrate specificity in the red alga <i>Cyanidioschyzon merolae</i> . Journal of Biochemistry, 2017, 162, mvw103.	0.9	2
136	Statistical analysis of word usage in biological publications since 1965: Historical delineation highlighting an emergence of function-oriented discourses in contemporary molecular and cellular biology. Journal of Theoretical Biology, 2019, 462, 293-303.	0.8	2
137	The Plant and Protist Organellar DNA Replication Enzyme POP Showing Up in Place of DNA Polymerase Gamma May Be a Suitable Antiprotozoal Drug Target. , 2013, , .		1
138	"Life-bearing molecules―versus "life-embodying systems― Two contrasting views on the what-is-life (WIL) problem persisting from the early days of molecular biology to the post-genomic cell- and organism-level biology. BioSystems, 2018, 167, 24-32.	0.9	1
139	Is Organization of Living Systems Explained by Probability?. Philosophies, 2021, 6, 3.	0.4	1
140	Evolution of the Organellar Transcription Machinery in Bryophytes and Vascular Plants. , 2004, , 91-110.		1
141	Carbon Metabolism. , 2017, , 297-321.		0
142	Resequencing of the Red Alga Cyanidioschyzon merolae: Strain Differences and Mitochondrial Sequence Corrections. Microbiology Resource Announcements, 2020, 9, .	0.3	0
143	Lipid Pathway Databases with a Focus on. Methods in Molecular Biology, 2021, 2295, 455-468.	0.4	0

Re-evaluation of theÂlnitial Ideas of Lynn Margulis. , 2019, , 45-72.

#	Article	IF	CITATIONS
145	Continuity and Discontinuity of Chloroplasts and Cyanobacteria. , 2019, , 121-146.		0
146	Endosymbiotic Discourses in theÂ1960s and 1970s. , 2019, , 73-94.		0
147	Phylogenetic Evidence for theÂEndosymbiotic Origin of Organelles. , 2019, , 97-120.		0
148	Re-examination of the"Endosymbiotic Eventâ€: , 2019, , 147-168.		0
149	Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids. , 2007, , 75-102.		0