Deborah Prezzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886539/publications.pdf

Version: 2024-02-01

49 papers

3,325 citations

257101 24 h-index 50 g-index

52 all docs 52 docs citations

52 times ranked 5471 citing authors

#	Article	IF	CITATIONS
1	Band structure modulation by methoxy-functionalization of graphene nanoribbons. Journal of Materials Chemistry C, 2022, 10, 4173-4181.	2.7	5
2	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
3	Inverted Conformation Stability of a Motor Molecule on a Metal Surface. Journal of Physical Chemistry C, 2022, 126, 9034-9040.	1.5	5
4	Black Phosphorus n-Type Doping by Cu: A Microscopic Surface Investigation. Journal of Physical Chemistry C, 2021, 125, 13477-13484.	1.5	7
5	Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy. Nanoscale, 2020, 12, 19681-19688.	2.8	3
6	Adsorption and Motion of Single Molecular Motors on TiO2(110). Journal of Physical Chemistry C, 2020, 124, 24776-24785.	1.5	5
7	Intrinsic edge excitons in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>:mm\>1&.11mm</td><td>nl:msub></td></mml:mn></mml:msub></mml:math>	:mm\>1&.11mm	nl:msub>
8	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	1.1	8
9	Tailoring optical properties and stimulated emission in nanostructured polythiophene. Scientific Reports, 2019, 9, 7370.	1.6	10
10	Bright Electroluminescence from Single Graphene Nanoribbon Junctions. Nano Letters, 2018, 18, 175-181.	4.5	61
11	Termini effects on the optical properties of graphene nanoribbons. European Physical Journal B, 2018, 91, 1.	0.6	5
12	Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. Journal of the American Chemical Society, 2018, 140, 7803-7809.	6.6	68
13	FePc Adsorption on the Moiré Superstructure of Graphene Intercalated with a Cobalt Layer. Journal of Physical Chemistry C, 2017, 121, 1639-1647.	1.5	25
14	Probing optical excitations in chevron-like armchair graphene nanoribbons. Nanoscale, 2017, 9, 18326-18333.	2.8	19
15	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	5.8	85
16	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	4.5	83
17	Electronic Structure Evolution during the Growth of Graphene Nanoribbons on Au(110). Journal of Physical Chemistry C, 2016, 120, 7323-7331.	1.5	16
18	Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS ₂ . ACS Nano, 2016, 10, 1182-1188.	7.3	272

#	Article	IF	Citations
19	Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface. Journal of Physical Chemistry C, 2015, 119, 2427-2437.	1.5	57
20	Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chemical Science, 2014, 5, 4419-4423.	3.7	81
21	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	5 . 8	155
22	Optical Properties of Bilayer Graphene Nanoflakes. Journal of Physical Chemistry C, 2014, 118, 23219-23225.	1.5	19
23	Anisotropy and Size Effects on the Optical Spectra of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2014, 118, 6507-6513.	1.1	20
24	<i>Ab Initio</i> Simulation of Optical Limiting: The Case of Metal-Free Phthalocyanine. Physical Review Letters, 2014, 112, 198303.	2.9	29
25	Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces. ACS Nano, 2014, 8, 5765-5773.	7.3	49
26	Donor–Acceptor Shape Matching Drives Performance in Photovoltaics. Advanced Energy Materials, 2013, 3, 894-902.	10.2	43
27	Concavity Effects on the Optical Properties of Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2013, 117, 12909-12915.	1.5	3
28	Optical Excitations and Field Enhancement in Short Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2012, 3, 924-929.	2.1	32
29	Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. Journal of Physical Chemistry C, 2012, 116, 17328-17335.	1.5	52
30	Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935.	7.3	410
31	Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Letters, 2012, 12, 4025-4031.	4.5	471
32	Optical Properties and Charge-Transfer Excitations in Edge-Functionalized All-Graphene Nanojunctions. Journal of Physical Chemistry Letters, 2011, 2, 1315-1319.	2.1	44
33	Quantum dot states and optical excitations of edge-modulated graphene nanoribbons. Physical Review B, 2011, 84, .	1.1	59
34	Designing All-Graphene Nanojunctions by Covalent Functionalization. Journal of Physical Chemistry C, 2011, 115, 2969-2973.	1.5	36
35	Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons. Journal of Chemical Physics, 2010, 133, 124703.	1.2	45
36	Structure and Electronic Properties of Graphene Nanoislands on Co(0001). Nano Letters, 2009, 9, 2844-2848.	4. 5	236

#	Article	lF	CITATIONS
37	Exact biexciton binding energy in carbon nanotubes using a quantum Monte Carlo approach. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1997-1999.	1.3	4
38	Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review B, 2008, 77,	1.1	235
39	Publisher's Note: Optical properties of graphene nanoribbons: The role of many-body effects [Phys. Rev. B 77, 041404(R) (2008)]. Physical Review B, 2008, 77, .	1.1	4
40	Biexciton Stability in Carbon Nanotubes. Physical Review Letters, 2007, 99, 126806.	2.9	44
41	Optical properties of oneâ€dimensional graphene polymers: the case of polyphenanthrene. Physica Status Solidi (B): Basic Research, 2007, 244, 4124-4128.	0.7	6
42	Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3602-3610.	0.8	5
43	Two-photon photoluminescence and exciton binding energies in single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 2428-2435.	0.7	6
44	Excitons in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3204-3208.	0.7	13
45	Two-photon photoluminescence and exciton binding in single-walled carbon nanotubes: Experiment and theory. , 2006, , .		0
46	Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Physical Review B, 2005, 72, .	1.1	441
47	Electrical activity of Er and Er-O centers in silicon. Physical Review B, 2005, 71, .	1.1	9
48	Optical and electrical properties of vanadium and erbium in4H-SiC. Physical Review B, 2004, 69, .	1.1	17
49	Hydrogen-related photoluminescent centers in SiC. Physical Review B, 2004, 70, .	1.1	2