Deborah Prezzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Letters, 2012, 12, 4025-4031.	4.5	471
2	Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Physical Review B, 2005, 72, .	1.1	441
3	Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935.	7.3	410
4	Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS ₂ . ACS Nano, 2016, 10, 1182-1188.	7.3	272
5	Structure and Electronic Properties of Graphene Nanoislands on Co(0001). Nano Letters, 2009, 9, 2844-2848.	4.5	236
6	Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review B, 2008, 77,	1.1	235
7	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	5.8	155
8	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	5.8	85
9	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	4.5	83
10	Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chemical Science, 2014, 5, 4419-4423.	3.7	81
11	Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. Journal of the American Chemical Society, 2018, 140, 7803-7809.	6.6	68
12	Bright Electroluminescence from Single Graphene Nanoribbon Junctions. Nano Letters, 2018, 18, 175-181.	4.5	61
13	Quantum dot states and optical excitations of edge-modulated graphene nanoribbons. Physical Review B, 2011, 84, .	1.1	59
14	Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface. Journal of Physical Chemistry C, 2015, 119, 2427-2437.	1.5	57
15	Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. Journal of Physical Chemistry C, 2012, 116, 17328-17335.	1.5	52
16	Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces. ACS Nano, 2014, 8, 5765-5773.	7.3	49
17	Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons. Journal of Chemical Physics, 2010, 133, 124703.	1.2	45
18	Biexciton Stability in Carbon Nanotubes. Physical Review Letters, 2007, 99, 126806.	2.9	44

Deborah Prezzi

#	Article	IF	CITATIONS
19	Optical Properties and Charge-Transfer Excitations in Edge-Functionalized All-Graphene Nanojunctions. Journal of Physical Chemistry Letters, 2011, 2, 1315-1319.	2.1	44
20	Donor–Acceptor Shape Matching Drives Performance in Photovoltaics. Advanced Energy Materials, 2013, 3, 894-902.	10.2	43
21	Designing All-Graphene Nanojunctions by Covalent Functionalization. Journal of Physical Chemistry C, 2011, 115, 2969-2973.	1.5	36
22	Optical Excitations and Field Enhancement in Short Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2012, 3, 924-929.	2.1	32
23	<i>Ab Initio</i> Simulation of Optical Limiting: The Case of Metal-Free Phthalocyanine. Physical Review Letters, 2014, 112, 198303.	2.9	29
24	FePc Adsorption on the Moiré Superstructure of Graphene Intercalated with a Cobalt Layer. Journal of Physical Chemistry C, 2017, 121, 1639-1647.	1.5	25
25	Anisotropy and Size Effects on the Optical Spectra of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2014, 118, 6507-6513.	1.1	20
26	Optical Properties of Bilayer Graphene Nanoflakes. Journal of Physical Chemistry C, 2014, 118, 23219-23225.	1.5	19
27	Probing optical excitations in chevron-like armchair graphene nanoribbons. Nanoscale, 2017, 9, 18326-18333.	2.8	19
28	Optical and electrical properties of vanadium and erbium in4H-SiC. Physical Review B, 2004, 69, .	1.1	17
29	Electronic Structure Evolution during the Growth of Graphene Nanoribbons on Au(110). Journal of Physical Chemistry C, 2016, 120, 7323-7331.	1.5	16
30	Excitons in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3204-3208.	0.7	13
31	Tailoring optical properties and stimulated emission in nanostructured polythiophene. Scientific Reports, 2019, 9, 7370.	1.6	10
32	Electrical activity of Er and Er-O centers in silicon. Physical Review B, 2005, 71, .	1.1	9
33	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
34	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	1.1	8
35	Black Phosphorus n-Type Doping by Cu: A Microscopic Surface Investigation. Journal of Physical Chemistry C, 2021, 125, 13477-13484.	1.5	7
36	Two-photon photoluminescence and exciton binding energies in single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 2428-2435.	0.7	6

#	Article	IF	CITATIONS
37	Optical properties of oneâ€dimensional graphene polymers: the case of polyphenanthrene. Physica Status Solidi (B): Basic Research, 2007, 244, 4124-4128.	0.7	6
38	Intrinsic edge excitons in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	:m n.x <td>ml:masub></td>	ml:masub>
39	Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3602-3610.	0.8	5
40	Termini effects on the optical properties of graphene nanoribbons. European Physical Journal B, 2018, 91, 1.	0.6	5
41	Adsorption and Motion of Single Molecular Motors on TiO2(110). Journal of Physical Chemistry C, 2020, 124, 24776-24785.	1.5	5
42	Band structure modulation by methoxy-functionalization of graphene nanoribbons. Journal of Materials Chemistry C, 2022, 10, 4173-4181.	2.7	5
43	Inverted Conformation Stability of a Motor Molecule on a Metal Surface. Journal of Physical Chemistry C, 2022, 126, 9034-9040.	1.5	5
44	Exact biexciton binding energy in carbon nanotubes using a quantum Monte Carlo approach. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1997-1999.	1.3	4
45	Publisher's Note: Optical properties of graphene nanoribbons: The role of many-body effects [Phys. Rev. B 77, 041404(R) (2008)]. Physical Review B, 2008, 77, .	1.1	4
46	Concavity Effects on the Optical Properties of Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2013, 117, 12909-12915.	1.5	3
47	Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy. Nanoscale, 2020, 12, 19681-19688.	2.8	3
48	Hydrogen-related photoluminescent centers in SiC. Physical Review B, 2004, 70, .	1.1	2
49	Two-photon photoluminescence and exciton binding in single-walled carbon nanotubes: Experiment and theory. , 2006, , .		0