Maziar Shakerzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886494/publications.pdf

Version: 2024-02-01

840119 676716 31 497 11 22 citations h-index g-index papers 32 32 32 777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dielectric dispersion and superior thermal characteristics in isotope-enriched hexagonal boron nitride thin films: evaluation as thermally self-dissipating dielectrics for GaN transistors. Journal of Materials Chemistry C, 2020, 8, 9558-9568.	2.7	4
2	Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors. Journal of Materials Chemistry C, 2020, 8, 4421-4431.	2.7	5
3	Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Research, 2020, 13, 2371-2377.	5.8	5
4	On the recovery of 2DEG properties in vertically ordered h-BN deposited AlGaN/GaN heterostructures on Si substrate. Applied Physics Express, 2020, 13, 065508.	1.1	7
5	Novel Solution for High-Temperature Dielectric Application to Encapsulate High-Voltage Power Semiconductor Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 3-9.	1.4	6
6	Electrical properties of FCVA deposited nano-crystalline graphitic carbon thin films with in situ treatment techniques. EPJ Applied Physics, 2019, 85, 20301.	0.3	0
7	Wettability, nanoscratch resistance and thermal stability of filtered cathodic vacuum arc grown nitrogenated amorphous carbon films. Surface and Coatings Technology, 2016, 292, 30-36.	2.2	1
8	Laser Heating-Induced Degradation of Ultrathin Media Carbon Overcoat for Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2016, 52, 1-6.	1.2	3
9	Self-organised hybrid nanostructures composed of the array of vertically aligned carbon nanotubes and planar graphene multi-layer. International Journal of Nanotechnology, 2014, 11, 230.	0.1	1
10	Laser-Heating-Induced Damage to Ultrathin Carbon Overcoat in Heat-Assisted Magnetic Recording. Tribology Letters, 2014, 53, 303-310.	1.2	10
11	Laser irradiation effect on carbon overcoat for HAMR application. Surface and Interface Analysis, 2014, 46, 204-208.	0.8	5
12	Thickness dependency of the structure and laser irradiation stability of filtered cathodic vacuum arc grown carbon films for heat assisted magnetic recording overcoat. Surface and Coatings Technology, 2013, 236, 207-211.	2.2	3
13	The effect of high deposition energy of carbon overcoats on perpendicular magnetic recording media. Applied Physics Letters, 2013, 103, .	1.5	3
14	Electrical properties of textured carbon film formed by pulsed laser annealing. Diamond and Related Materials, 2012, 23, 135-139.	1.8	11
15	Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition. Nanoscale Research Letters, 2012, 7, 102.	3.1	24
16	Thickness dependency of field emission in amorphous and nanostructured carbon thin films. Nanoscale Research Letters, 2012, 7, 286.	3.1	7
17	Reâ€ordering Chaotic Carbon: Origins and Application of Textured Carbon. Advanced Materials, 2012, 24, 4112-4123.	11.1	25
18	Thermal conductivity of nanocrystalline carbon films studied by pulsed photothermal reflectance. Carbon, 2012, 50, 1428-1431.	5.4	19

#	Article	IF	CITATIONS
19	Study on thermal boundary conductance between diamond and amorphous carbon., 2011,,.		О
20	Template-Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li-Ion Battery Anodes. Chemistry of Materials, 2011, 23, 1032-1038.	3.2	65
21	Field emission enhancement and microstructural changes of carbon films by single pulse laser irradiation. Carbon, 2011, 49, 1018-1024.	5.4	29
22	Plasma density induced formation of nanocrystals in physical vapor deposited carbon films. Carbon, 2011, 49, 1733-1744.	5.4	34
23	Nonvolatile Memory Effects of ZnO Nanoparticles Embedded in an Amorphous Carbon Layer. Japanese Journal of Applied Physics, 2010, 49, 070209.	0.8	2
24	Highly conductive aligned carbon film for interconnect application. , 2010, , .		0
25	Microstructure and electrical properties of in-situ annealed carbon films. , 2010, , .		1
26	Superhydrophobic amorphous carbon/carbon nanotube nanocomposites. Applied Physics Letters, 2009, 94, .	1.5	51
27	Fabrication of aligned carbon nanotubes on Cu catalyst by dc plasma-enhanced catalytic decomposition. Applied Surface Science, 2009, 255, 6404-6407.	3.1	8
28	Quantitative, nanoscale mapping of sp2 percentage and crystal orientation in carbon multilayers. Carbon, 2009, 47, 94-101.	5.4	24
29	Electrowetting Control of Cassie-to-Wenzel Transitions in Superhydrophobic Carbon Nanotube-Based Nanocomposites. ACS Nano, 2009, 3, 3031-3036.	7.3	120
30	Superhydrophobic carbon nanotube/amorphous carbon nanosphere hybrid film. Diamond and Related Materials, 2009, 18, 1235-1238.	1.8	21
31	Structure and wetting properties of metal polymer nanocomposites. International Journal of Nanotechnology, 2009, 6, 653.	0.1	3