Christine Opagiste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886380/publications.pdf

Version: 2024-02-01

840119 752256 52 480 11 20 citations g-index h-index papers 55 55 55 482 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnetic phase diagram of (Mo _{2/3} RE _{1/3}) ₂ AlC, RE = Tb and Dy, studied by magnetization, specific heat, and neutron diffraction analysis. Journal of Physics Condensed Matter, 2022, 34, 215801. Magnetic properties of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>(</mml:mo><mml:msub><mml:mi) etqq0<="" td="" tj=""><td>0.7</td><td>1</td></mml:mi)></mml:msub></mml:math>	0.7	1
2	Magnetic properties of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>(</mml:mo><mml:msub><mml:mi) etqqc<="" td="" tj=""><td>0 0 rgBT /</td><td>Overlock 10 T</td></mml:mi)></mml:msub></mml:math>	0 0 rgBT /	Overlock 10 T

#	Article	IF	Citations
19	Metamagnetic behaviour of Nd3Pt23Si11. Journal of Magnetism and Magnetic Materials, 2013, 340, 46-49.	1.0	6
20	Crystal structure and physical properties of the new ternary compounds Nd3Pt23Si11 and Pr3Pt23Si11. Journal of Alloys and Compounds, 2012, 541, 403-406.	2.8	4
21	display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub> Pt <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub><td>1.1</td><td>8</td></mml:math>	1.1	8
22	Lu5Ir4Si10 whiskers: Morphology, crystal structure, superconducting and charge density wave transition studies. Journal of Crystal Growth, 2010, 312, 3204-3208.	0.7	6
23	Crystal growth, structure and ferromagnetic properties of a Ce3Pt23Si11 single crystal. Journal of Magnetism and Magnetic Materials, 2009, 321, 613-618.	1.0	9
24	Crystal growth and characterization of the ruthenate superconducting compound: Sr2RuO4. Journal of Crystal Growth, 2005, 275, e739-e743.	0.7	3
25	Characterization of low AC loss elementary and assembled BSCCO conductors. Superconductor Science and Technology, 2005, 18, 461-469.	1.8	1
26	Low-Frequency Relaxation Phenomena in \hat{l} ±-LilO3: The Nature and Role of Defects. Journal of Solid State Chemistry, 2002, 168, 76-84.	1.4	11
27	The reaction pathway for the formation of Tl-2223. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1137-1140.	0.6	5
28	Pathway for the formation of the Tl-2223 phase: anin situneutron powder diffraction study. Superconductor Science and Technology, 2001, 14, 583-598.	1.8	17
29	Crystal Structure of Ca4.78Cu6O11.60. Journal of Solid State Chemistry, 2000, 151, 170-180.	1.4	11
30	Structural and composition changes in superconducting ceramics locally irradiated by electrons. Physics of the Solid State, 1997, 39, 392-396.	0.2	3
31	Cathodoluminescence and photoluminescence studies of sintered BaCuO2. Journal of Luminescence, 1997, 71, 299-304.	1.5	1
32	Cathodoluminescence microscopy of superconducting and non-superconducting Tl2Ba2CuO6+ \hat{l} ′ polycrystals. Physica C: Superconductivity and Its Applications, 1996, 259, 121-130.	0.6	7
33	Electron beam induced compositional and structural changes in. Superconductor Science and Technology, 1996, 9, 766-774.	1.8	0
34	Magnetization scaling below Tcin BiSrCaCuO and TlBaCaCuO superconducting ceramics. Journal of Physics Condensed Matter, 1994, 6, L399-L404.	0.7	3
35	Reversibility of the mixed state of the 107K Tl2Ba2CaCu2O8 superconductor investigated by different susceptibility measurements. Physica B: Condensed Matter, 1994, 194-196, 1809-1810.	1.3	2
36	Equilibrium diagram Tc(T;p(O2)) of Tl2Ba2CuO6. Physica B: Condensed Matter, 1994, 194-196, 1947-1948.	1.3	3

3

#	Article	IF	Citations
37	Characterization of the 105 K superconductor Tl2Ba2CaCu2O8 ("2212â€). Physica B: Condensed Matter, 1994, 194-196, 2183-2184.	1.3	1
38	Reversible magnetization below Tc in high-quality superconducting ceramics. Physica C: Superconductivity and Its Applications, 1994, 224, 263-276.	0.6	44
39	Characterization of tetragonal Tl2Ba2Cu1O6+ \hat{l} by cathodoluminescence microscopy. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1139-1140.	0.6	O
40	The London penetration depth î»ab evolution with Tc in the TI-2201 overdoped superconductor. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1815-1816.	0.6	0
41	Evolution of the (IR) reversibility domain extension with Tc in the overdoped Tl-2201 high Tc superconductor. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2747-2748.	0.6	1
42	Luminescence properties of tetragonal Tl2Ba2Cu1O6+ \hat{l} superconducting ceramics. Solid State Communications, 1994, 91, 747-750.	0.9	7
43	Thermodynamic and kinetic studies of the phase transitions in Tl2Ba2CuO6 $\hat{A}\pm x$. Journal of Alloys and Compounds, 1994, 215, 135-140.	2.8	4
44	Preparation of pure Tl2Ba2CuO6±x. Physica C: Superconductivity and Its Applications, 1993, 205, 177-185.	0.6	14
45	Metallurgy, HRTEM, magnetic properties and specific heat of Tl2Ba2Cu1O6+ \hat{l} ′ 90 K-superconductors obtained by a new process. Physica C: Superconductivity and Its Applications, 1993, 205, 247-258.	0.6	17
46	Phase diagram of the Tl2Ba2CuO6 compounds in the T, $p(O2)$ plane. Physica C: Superconductivity and Its Applications, 1993, 213, 17-25.	0.6	26
47	Calcium substitution in the Y2Ba4Cu7O15 + \hat{l}' superconducting phase. Journal of Alloys and Compounds, 1993, 196, 235-239.	2.8	3
48	Reversibility of the mixed state of the 90K Tl2Ba2CuO6+x superconductor. Journal of Alloys and Compounds, 1993, 195, 455-458.	2.8	7
49	A new elaboration process of the superconducting Tl2Ba2Cu1O6 phase with Tc=90K. Journal of Alloys and Compounds, 1993, 195, 47-51.	2.8	15
50	Phase equilibria in the binary TlO1.5-CuO, TlO1.5-BaO and ternary TlO1.5-BaO-CuO systems. Journal of Alloys and Compounds, 1993, 195, 53-56.	2.8	8
51	Specific heat of the 90-K superconductor Tl2Ba2CuO6 ("2201â€) prepared in high pressure Ar or He gas. Journal of Alloys and Compounds, 1993, 195, 547-550.	2.8	3
52	Magnetic properties of the Tl2Ba2Cu1O6+ \hat{l} 90K superconductor. Journal of Alloys and Compounds, 1993, 195, 607-610.	2.8	2