John C Schimenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bone mass and adaptation to mechanical loading are sexually dimorphic in adult osteoblast-specific ERα knockout mice. Bone, 2022, 158, 116349.	2.9	6
2	Conditional surrender in one generation: determining the reproductive roles of mouse embryo lethal genes by embryo complementation. Biology of Reproduction, 2021, 104, 8-10.	2.7	0
3	Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biology, 2021, 22, 83.	8.8	62
4	Human MLH1/3 variants causing aneuploidy, pregnancy loss, and premature reproductive aging. Nature Communications, 2021, 12, 5005.	12.8	13
5	Strategies to Identify Genetic Variants Causing Infertility. Trends in Molecular Medicine, 2021, 27, 792-806.	6.7	9
6	Genome maintenance during embryogenesis. DNA Repair, 2021, 106, 103195.	2.8	8
7	Variants in <i>RABL2A</i> causing male infertility and ciliopathy. Human Molecular Genetics, 2020, 29, 3402-3411.	2.9	11
8	Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes and Development, 2020, 34, 1637-1649.	5.9	8
9	Most Commonly Mutated Genes in High-Grade Serous Ovarian Carcinoma Are Nonessential for Ovarian Surface Epithelial Stem Cell Transformation. Cell Reports, 2020, 32, 108086.	6.4	16
10	A reporter mouse for in vivo detection of <scp>DNA</scp> damage in embryonic germ cells. Genesis, 2020, 58, e23368.	1.6	3
11	Testis formation in XX individuals resulting from novel pathogenic variants in Wilms' tumor 1 () Tj ETQq1 1 0 2020, 117, 13680-13688.).784314 r 7.1	gBT /Overloc 42
12	Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints. Chromosoma, 2020, 129, 69-82.	2.2	2
13	SKP1 drives the prophase I to metaphase I transition during male meiosis. Science Advances, 2020, 6, eaaz2129.	10.3	44
14	Oocyte Elimination Through DNA Damage Signaling from CHK1/CHK2 to p53 and p63. Genetics, 2020, 215, 373-378.	2.9	35
15	A novel function for CDK2 activity at meiotic crossover sites. PLoS Biology, 2020, 18, e3000903.	5.6	22
16	Meiotic epigenetic factor PRDM9 impacts sperm quality of hybrid mice. Reproduction, 2020, 160, 53-64.	2.6	4
17	A predicted deleterious allele of the essential meiosis gene MND1, present in ~ 3% of East Asians, does not disrupt reproduction in mice. Molecular Human Reproduction, 2019, 25, 668-673.	2.8	10
18	Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. Nature Communications, 2019, 10, 4141.	12.8	48

#	Article	IF	CITATIONS
19	CDK2 kinase activity is a regulator of male germ cell fate. Development (Cambridge), 2019, 146, .	2.5	15
20	A segregating human allele of <i>SPO11</i> modeled in mice disrupts timing and amounts of meiotic recombination, causing oligospermia and a decreased ovarian reserveâ€. Biology of Reproduction, 2019, 101, 347-359.	2.7	10
21	ENUâ€induced mutant allele of <i>Dnah1</i> , <i>ferf1</i> , causes abnormal sperm behavior and fertilization failure in mice. Molecular Reproduction and Development, 2019, 86, 416-425.	2.0	10
22	Female-biased embryonic death from inflammation induced by genomic instability. Nature, 2019, 567, 105-108.	27.8	48
23	Whole Mount Immunofluorescence and Follicle Quantification of Cultured Mouse Ovaries. Journal of Visualized Experiments, 2018, , .	0.3	10
24	Spermatocytes. , 2018, , 36-41.		1
25	A putative human infertility allele of the meiotic recombinase DMC1 does not affect fertility in mice. Human Molecular Genetics, 2018, 27, 3911-3918.	2.9	14
26	Unpackaging the genetics of mammalian fertility: strategies to identify the "reproductive genomeâ€â€. Biology of Reproduction, 2018, 99, 1119-1128.	2.7	18
27	Repair of Meiotic DNA Breaks and Homolog Pairing in Mouse Meiosis Requires a Minichromosome Maintenance (MCM) Paralog. Genetics, 2017, 205, 529-537.	2.9	21
28	The DNA Damage Checkpoint Eliminates Mouse Oocytes with Chromosome Synapsis Failure. Molecular Cell, 2017, 67, 1026-1036.e2.	9.7	87
29	Pharmacological Inhibition of the DNA Damage Checkpoint Prevents Radiation-Induced Oocyte Death. Genetics, 2017, 206, 1823-1828.	2.9	46
30	Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation. PLoS Genetics, 2016, 12, e1005787.	3.5	41
31	The Chromatin Remodeling Component <i>Arid1a</i> Is a Suppressor of Spontaneous Mammary Tumors in Mice. Genetics, 2016, 203, 1601-1611.	2.9	8
32	Transcriptional profiling of cortical versus cancellous bone from mechanically-loaded murine tibiae reveals differential gene expression. Bone, 2016, 86, 22-29.	2.9	59
33	L. C. Dunn and Donald Charles on Quantitative Traits in the Mouse. Genetics, 2016, 202, 867-868.	2.9	Ο
34	Effects of Deletion of ERα in Osteoblast-Lineage Cells on Bone Mass and Adaptation to Mechanical Loading Differ in Female and Male Mice. Journal of Bone and Mineral Research, 2015, 30, 1468-1480.	2.8	50
35	<scp>MCM</scp> 9 deficiency delays primordial germ cell proliferation independent of the <scp>ATM</scp> pathway. Genesis, 2015, 53, 678-684.	1.6	21
36	Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. Journal of Cell Biology, 2015, 208, 53-69.	5.2	39

#	Article	IF	CITATIONS
37	The genetics of human infertility by functional interrogation of SNPs in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10431-10436.	7.1	62
38	MEI4: a central player in the regulation of meiotic DNA double strand break formation in the mouse. Journal of Cell Science, 2015, 128, 1800-11.	2.0	65
39	A Mouse Geneticist's Practical Guide to CRISPR Applications. Genetics, 2015, 199, 1-15.	2.9	290
40	Induced pluripotent stem cells have similar immunogenic and more potent immunomodulatory properties compared with bone marrow-derived stromal cells <i>in vitro</i> . Regenerative Medicine, 2014, 9, 621-635.	1.7	29
41	Hypersensitivity of Primordial Germ Cells to Compromised Replication-Associated DNA Repair Involves ATM-p53-p21 Signaling. PLoS Genetics, 2014, 10, e1004471.	3.5	56
42	IQ Motif-Containing G (<i>Iqcg</i>) Is Required for Mouse Spermiogenesis. G3: Genes, Genomes, Genetics, 2014, 4, 367-372.	1.8	30
43	STAG3 is a strong candidate gene for male infertility. Human Molecular Genetics, 2014, 23, 3421-3431.	2.9	69
44	Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes and Development, 2014, 28, 594-607.	5.9	128
45	Female Mice Lacking Estrogen Receptor-Alpha in Osteoblasts Have Compromised Bone Mass and Strength. Journal of Bone and Mineral Research, 2014, 29, 370-379.	2.8	102
46	Reversal of Female Infertility by <i>Chk2</i> Ablation Reveals the Oocyte DNA Damage Checkpoint Pathway. Science, 2014, 343, 533-536.	12.6	231
47	Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nature Genetics, 2014, 46, 194-199.	21.4	172
48	A method for isolating high quality RNA from mouse cortical and cancellous bone. Bone, 2014, 68, 1-5.	2.9	59
49	miR-34 Cooperates with p53 in Suppression of Prostate Cancer by Joint Regulation of Stem Cell Compartment. Cell Reports, 2014, 6, 1000-1007.	6.4	93
50	Applying "Gold Standards―to In-Vitro-Derived Germ Cells. Cell, 2014, 157, 1257-1261.	28.9	82
51	An Ancient Transcription Factor Initiates the Burst of piRNA Production during Early Meiosis in Mouse Testes. Molecular Cell, 2013, 50, 67-81.	9.7	322
52	AKAP9 Is Essential for Spermatogenesis and Sertoli Cell Maturation in Mice. Genetics, 2013, 194, 447-457.	2.9	24
53	The 2013 Genetics Society of America Medal. Genetics, 2013, 194, 5-7.	2.9	0
54	The MCM8-MCM9 Complex Promotes RAD51 Recruitment at DNA Damage Sites To Facilitate Homologous Recombination. Molecular and Cellular Biology, 2013, 33, 1632-1644.	2.3	100

#	Article	IF	CITATIONS
55	Phosphorylation of Chromosome Core Components May Serve as Axis Marks for the Status of Chromosomal Events during Mammalian Meiosis. PLoS Genetics, 2012, 8, e1002485.	3.5	68
56	Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes. PLoS Computational Biology, 2012, 8, e1002694.	3.2	137
57	Interallelic and Intergenic Incompatibilities of the Prdm9 (Hst1) Gene in Mouse Hybrid Sterility. PLoS Genetics, 2012, 8, e1003044.	3.5	68
58	Post-transcriptional homeostasis and regulation of MCM2–7 in mammalian cells. Nucleic Acids Research, 2012, 40, 4914-4924.	14.5	38
59	Spata22, a Novel Vertebrate-Specific Gene, Is Required for Meiotic Progress in Mouse Germ Cells1. Biology of Reproduction, 2012, 86, 45.	2.7	65
60	Meiotic cohesin complexes are essential for the formation of the axial element in mice. Journal of Cell Biology, 2012, 197, 877-885.	5.2	100
61	Using Genetic Networks and Homology to Understand the Evolution of Phenotypic Traits. Current Genomics, 2012, 13, 74-84.	1.6	29
62	Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18653-18660.	7.1	58
63	MARF1 Regulates Essential Oogenic Processes in Mice. Science, 2012, 335, 1496-1499.	12.6	100
64	Genetics of Meiosis and Recombination in Mice. International Review of Cell and Molecular Biology, 2012, 298, 179-227.	3.2	86
65	Comparative Oncogenomics Implicates the Neurofibromin 1 Gene (<i>NF1</i>) as a Breast Cancer Driver. Genetics, 2012, 192, 385-396.	2.9	61
66	Genetic background affects induced pluripotent stem cell generation. Stem Cell Research and Therapy, 2012, 3, 30.	5.5	22
67	MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. Journal of Clinical Investigation, 2012, 122, 814-820.	8.2	230
68	Haploid Embryonic Stem Cells and the Dominance of Recessive Traits. Cell Stem Cell, 2011, 9, 488-489.	11.1	4
69	A reduction of licensed origins reveals strain-specific replication dynamics in mice. Mammalian Genome, 2011, 22, 506-517.	2.2	14
70	Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes and Development, 2011, 25, 742-754.	5.9	281
71	A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development (Cambridge), 2011, 138, 3319-3330.	2.5	121
72	Genetic Evidence That Synaptonemal Complex Axial Elements Govern Recombination Pathway Choice in Mice. Genetics, 2011, 189, 71-82.	2.9	48

#	Article	IF	CITATIONS
73	Minichromosome maintenance helicase paralog MCM9 is dispensible for DNA replication but functions in germ-line stem cells and tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17702-17707.	7.1	76
74	Defective imprint resetting in carriers of Robertsonian translocation Rb (8.12). Mammalian Genome, 2010, 21, 377-387.	2.2	11
75	The fullâ€length isoform of the mouse pleckstrin homology domainâ€interacting protein (PHIP) is required for postnatal growth. FEBS Letters, 2010, 584, 4121-4127.	2.8	17
76	High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5. BMC Genetics, 2010, 11, 106.	2.7	23
77	Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nature Reviews Genetics, 2010, 11, 124-136.	16.3	471
78	Evidence Implicating CCNB1IP1, a RING Domain-Containing Protein Required for Meiotic Crossing Over in Mice, as an E3 SUMO Ligase. Genes, 2010, 1, 440-451.	2.4	26
79	Incremental Genetic Perturbations to MCM2-7 Expression and Subcellular Distribution Reveal Exquisite Sensitivity of Mice to DNA Replication Stress. PLoS Genetics, 2010, 6, e1001110.	3.5	73
80	Deficiency of Suppressor Enhancer Lin12 1 Like (SEL1L) in Mice Leads to Systemic Endoplasmic Reticulum Stress and Embryonic Lethality. Journal of Biological Chemistry, 2010, 285, 13694-13703.	3.4	76
81	PDCD2 is essential for inner cell mass development and embryonic stem cell maintenance. Developmental Biology, 2010, 347, 279-288.	2.0	27
82	Development and use of DNA archives at veterinary teaching hospitals to investigate the genetic basis of disease in dogs. Journal of the American Veterinary Medical Association, 2009, 234, 75-80.	0.5	11
83	Aneuploidy and Improved Growth Are Coincident but Not Causal in a Yeast Cancer Model. PLoS Biology, 2009, 7, e1000161.	5.6	20
84	A Mouse Speciation Gene Encodes a Meiotic Histone H3 Methyltransferase. Science, 2009, 323, 373-375.	12.6	402
85	Mutagenesis of Mouse Embryonic Stem Cells with Ethylmethanesulfonate. Methods in Molecular Biology, 2009, 530, 131-138.	0.9	8
86	The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte–embryo transition. Developmental Biology, 2008, 317, 72-82.	2.0	63
87	An Allelic Series Uncovers Novel Roles of the BRCT Domain-Containing Protein PTIP in Mouse Embryonic Vascular Development. Molecular and Cellular Biology, 2008, 28, 6439-6451.	2.3	11
88	Mutation of a Ubiquitously Expressed Mouse Transmembrane Protein (Tapt1) Causes Specific Skeletal Homeotic Transformations. Genetics, 2007, 175, 699-707.	2.9	33
89	Mouse Pachytene Checkpoint 2 (Trip13) Is Required for Completing Meiotic Recombination but Not Synapsis. PLoS Genetics, 2007, 3, e130.	3.5	205
90	A Dominant, Recombination-Defective Allele of Dmc1 Causing Male-Specific Sterility. PLoS Biology, 2007, 5, e105.	5.6	67

#	Article	IF	CITATIONS
91	Sperm Motility Defects and Infertility in Male Mice with a Mutation in Nsun7, a Member of the Sun Domain-Containing Family of Putative RNA Methyltransferases1. Biology of Reproduction, 2007, 77, 376-382.	2.7	82
92	Mutation in Mouse Hei10, an E3 Ubiquitin Ligase, Disrupts Meiotic Crossing Over. PLoS Genetics, 2007, 3, e139.	3.5	108
93	Genetic Screen for Chromosome Instability in Mice: Mcm4 and Breast Cancer. Cell Cycle, 2007, 6, 1135-1140.	2.6	20
94	Fast forward to new genes in mammalian reproduction. Journal of Physiology, 2007, 578, 25-32.	2.9	16
95	A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nature Genetics, 2007, 39, 93-98.	21.4	291
96	Different regulatory systems operate in the midpiece and principal piece of the mammalian sperm flagellum. Society of Reproduction and Fertility Supplement, 2007, 65, 331-4.	0.2	10
97	The mouse gcd2 mutation causes primordial germ cell depletion. Mechanisms of Development, 2006, 123, 559-569.	1.7	13
98	Mutagenesis as an unbiased approach to identify novel contraceptive targets. Molecular and Cellular Endocrinology, 2006, 250, 201-205.	3.2	63
99	Synapsis or silence. Nature Genetics, 2005, 37, 11-13.	21.4	390
100	The translesion DNA polymerase Î, plays a dominant role in immunoglobulin gene somatic hypermutation. EMBO Journal, 2005, 24, 3757-3769.	7.8	114
101	Transgenic rescue of the mouse t complex haplolethal locus Thl1. Mammalian Genome, 2005, 16, 838-846.	2.2	11
102	Meil is epistatic to Dmc1 during mouse meiosis. Chromosoma, 2005, 114, 127-134.	2.2	64
103	Random mutagenesis of proximal mouse chromosome 5 uncovers predominantly embryonic lethal mutations. Genome Research, 2005, 15, 1095-1105.	5.5	55
104	Mutations in Serac1 or Synj2 cause proximal t haplotype-mediated male mouse sterility but not transmission ratio distortion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3342-3347.	7.1	19
105	Mutations in <i>Col4a1</i> Cause Perinatal Cerebral Hemorrhage and Porencephaly. Science, 2005, 308, 1167-1171.	12.6	474
106	Mouse Pachytene Checkpoint 2 (Trip13) is Required for Completing Meiotic Recombination but not Synapsis. PLoS Genetics, 2005, preprint, e130.	3.5	0
107	Forward Genetic Screens for Meiotic and Mitotic Recombination-Defective Mutants in Mice. , 2004, 262, 087-108.		39
108	Identification of a cryptic lethal mutation in the mouse tw73 haplotype. Genetical Research, 2004, 84, 153-159.	0.9	4

#	Article	IF	CITATIONS
109	The Mouse Genomic Instability Mutation chaos1 Is an Allele of Polq That Exhibits Genetic Interaction with Atm. Molecular and Cellular Biology, 2004, 24, 10381-10389.	2.3	125
110	Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes and Development, 2004, 18, 486-491.	5.9	233
111	Functional annotation of mouse mutations in embryonic stem cells by use of expression profiling. Mammalian Genome, 2004, 15, 1-13.	2.2	11
112	Genomewide two-generation screens for recessive mutations by ES cell mutagenesis. Mammalian Genome, 2004, 15, 960-965.	2.2	10
113	Positional cloning and characterization of mouse <i>mei8</i> , a disrupted allele of the meiotic cohesin <i>Rec8</i> . Genesis, 2004, 40, 184-194.	1.6	171
114	Overlapping deletions spanning the proximal two-thirds of the mouse t complex. Mammalian Genome, 2003, 14, 817-829.	2.2	12
115	Toward the Genetics of Mammalian Reproduction: Induction and Mapping of Gametogenesis Mutants in Mice1. Biology of Reproduction, 2003, 69, 1615-1625.	2.7	61
116	Positional cloning and characterization of Mei1, a vertebrate-specific gene required for normal meiotic chromosome synapsis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15706-15711.	7.1	111
117	Phenotype-Based Identification of Mouse Chromosome Instability Mutants. Genetics, 2003, 163, 1031-1040.	2.9	104
118	The Mouse Meiotic Mutation mei1 Disrupts Chromosome Synapsis with Sexually Dimorphic Consequences for Meiotic Progression. Developmental Biology, 2002, 242, 174-187.	2.0	128
119	A Haplolethal Locus Uncovered by Deletions in the Mouse t Complex. Genetics, 2002, 160, 675-682.	2.9	15
120	Mutations of the Mouse Twist and sy (Fibrillin 2) Genes Induced by Chemical Mutagenesis of ES Cells. Genomics, 2001, 73, 291-298.	2.9	18
121	Experimental and computational approaches yield a high-resolution, 1-Mb physical map of the region harboring the mouse t haplotype sterility factor, tcs1. Mammalian Genome, 2001, 12, 668-670.	2.2	4
122	DelBank: a mouse ES-cell resource for generating deletions. Nature Genetics, 2001, 28, 310-311.	21.4	20
123	Monoallelic Gene Expression in Mice: Who? When? How? Why?. Genome Research, 2001, 11, 1799-1800.	5.5	6
124	Reciprocal Mouse and Human Limb Phenotypes Caused by Gain- and Loss-of-Function Mutations Affecting <i>Lmbr1</i> . Genetics, 2001, 159, 715-726.	2.9	32
125	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	12.6	125
126	Mouse mutants from chemically mutagenized embryonic stem cells. Nature Genetics, 2000, 24, 318-321.	21.4	148

#	Article	IF	CITATIONS
127	Segregation distortion of mouse t haplotypes. Trends in Genetics, 2000, 16, 240-243.	6.7	81
128	Toward the yeastification of mouse genetics: chemical mutagenesis of embryonic stem cells. Mammalian Genome, 2000, 11, 598-602.	2.2	23
129	Narrowing the Critical Regions for Mouse t Complex Transmission Ratio Distortion Factors by Use of Deletions. Genetics, 2000, 155, 793-801.	2.9	15
130	Physical Mapping of Male Fertility and Meiotic Drive Quantitative Trait Loci in the Mouse <i>t</i> Complex Using Chromosome Deficiencies. Genetics, 2000, 155, 803-812.	2.9	30
131	Mutagenesis in Mice Modern Times. Current Genomics, 2000, 1, 253-258.	1.6	0
132	Transgenic and Mutational Analyses of Meiotic Recombination in Micea. Annals of the New York Academy of Sciences, 1999, 870, 220-222.	3.8	3
133	ORFless, intronless, and mutant transcription units in the mouse t complex responder (Tcr) locus. Mammalian Genome, 1999, 10, 969-976.	2.2	10
134	Mice and the Role of Unequal Recombination in Gene-Family Evolution. American Journal of Human Genetics, 1999, 64, 40-45.	6.2	9
135	Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice. Hearing Research, 1999, 135, 56-60.	2.0	84
136	Utility of C57BL/6J × 129/SvJae embryonic stem cells for generating chromosomal deletions: tolerance to Î ³ radiation and microsatellite polymorphism. Mammalian Genome, 1998, 9, 232-234.	2.2	30
137	Factors affecting ectopic gene conversion in mice. Mammalian Genome, 1998, 9, 355-360.	2.2	34
138	Meiotic Prophase Arrest with Failure of Chromosome Synapsis in Mice Deficient for Dmc1 , a Germline-Specific RecA Homolog. Molecular Cell, 1998, 1, 697-705.	9.7	589
139	Identification, Characterization, and Genetic Mapping ofRad51d,a New Mouse and HumanRAD51/RecA-Related Gene. Genomics, 1998, 49, 103-111.	2.9	125
140	Functional Genomics in the Mouse: Phenotype-Based Mutagenesis Screens. Genome Research, 1998, 8, 698-710.	5.5	104
141	Deletion Mapping of the Head Tilt (het) Gene in Mice: A Vestibular Mutation Causing Specific Absence of Otoliths. Genetics, 1998, 150, 815-822.	2.9	53
142	Molecular analysis of gene conversion in spermatids from transgenic mice. Gene, 1997, 200, 185-192.	2.2	19
143	Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nature Genetics, 1997, 15, 285-288.	21.4	149
144	Evidence for Cyclophosphamide-Induced Gene Conversion and Mutation in Mouse Germ Cells. Toxicology and Applied Pharmacology, 1997, 147, 343-350.	2.8	32

#	Article	IF	CITATIONS
145	A new spontaneous deletion on Chromosome 17 including brachyury. Mammalian Genome, 1997, 8, 932-933.	2.2	6
146	Targeted Mutagenesis of a Candidate <i>t</i> Complex Responder Gene in Mouse <i>t</i> Haplotypes Does Not Eliminate Transmission Ratio Distortion. Genetics, 1996, 144, 785-792.	2.9	17
147	Functional analysis of a t complex responder locus transgene in mice. Mammalian Genome, 1992, 3, 579-587.	2.2	12
148	Sodium butyrate causes reexpression of three membrane proteins on glycolipid-anchoring mutants. Somatic Cell and Molecular Genetics, 1991, 17, 349-357.	0.7	7
149	Microwave-accelerated fixation and lacZ activity staining of testicular cells in transgenic mice. Analytical Biochemistry, 1991, 198, 92-96.	2.4	21
150	Molecular structure of Tcp-10 genes from the t complex responder locus. Mammalian Genome, 1991, 1, 228-234.	2.2	14
151	Molecular cloning of the t complex responder genetic locus. Genomics, 1990, 8, 134-140.	2.9	27
152	Human homologs of two testes-expressed loci on mouse chromosome 17 map to opposite arms of chromosome 6. Genomics, 1989, 5, 139-143.	2.9	37
153	A candidate gene family for the mouse t complex responder (Tcr) locus responsible for haploid effects on sperm function. Cell, 1988, 55, 71-78.	28.9	86
154	An unstable family of large DNA elements in the center of the mouse t complex. Journal of Molecular Biology, 1987, 194, 583-594.	4.2	71
155	Ruminant globin gene structures suggest an evolutionary role for Alu-type repeats. Nucleic Acids Research, 1984, 12, 1641-1655.	14.5	75
156	Selection of Hypercellulolytic Mutants ofTrichoderma ReeseiBased on Resistance to Nystatin. Mycologia, 1983, 75, 876-880.	1.9	5