Yao Mingfa

List of Publications by Citations

Source: https://exaly.com/author-pdf/5886115/yao-mingfa-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

232 8,306 47 83 g-index

237 9,721 6 6.52 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
232	Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. <i>Progress in Energy and Combustion Science</i> , 2009 , 35, 398-437	33.6	849
231	Progress in the production and application of n-butanol as a biofuel. <i>Renewable and Sustainable Energy Reviews</i> , 2011 , 15, 4080-4106	16.2	688
230	Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. <i>Fuel</i> , 2010 , 89, 2191-2201	7.1	2 80
229	A Review on the Pd-Based Three-Way Catalyst. Catalysis Reviews - Science and Engineering, 2015, 57, 79-	-1 :44 6	174
228	Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. <i>Combustion and Flame</i> , 2013 , 160, 504-519	5.3	167
227	Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. <i>Applied Energy</i> , 2013 , 109, 202-212	10.7	160
226	Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfurandiesel, n-butanoldiesel and gasolinediesel blends. <i>Energy</i> , 2013 , 54, 333-342	7.9	159
225	Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel. Energy Conversion and Management, 2015, 90, 1-11	10.6	154
224	Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates. <i>Applied Energy</i> , 2013 , 112, 246-250	6 ^{10.7}	134
223	Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations. <i>Energy & Description</i> 27, 7843-7853	4.1	133
222	A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions. <i>Combustion and Flame</i> , 2015 , 162, 2390-2404	5.3	126
221	Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol. <i>Fuel</i> , 2015 , 141, 109-119	7.1	125
220	Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine. <i>Fuel</i> , 2016 , 177, 206-216	7.1	125
219	Soot Emissions of Various Oxygenated Biofuels in Conventional Diesel Combustion and Low-Temperature Combustion Conditions. <i>Energy & Diesel Combustion 2012</i> , 26, 1900-1911	4.1	115
218	Experimental and simulation investigation of the combustion characteristics and emissions using n -butanol/biodiesel dual-fuel injection on a diesel engine. <i>Energy</i> , 2014 , 74, 741-752	7.9	114
217	Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion. <i>Energy</i> , 2012 , 47, 515-521	7.9	114
216	Comparison of Ethanol and Butanol as Additives in Soybean Biodiesel Using a Constant Volume Combustion Chamber. <i>Energy & Description</i> 25, 1837-1846	4.1	110

(2017-2015)

215	Study of the control strategies on soot reduction under early-injection conditions on a diesel engine. <i>Fuel</i> , 2015 , 139, 472-481	7.1	102
214	Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. <i>Fuel</i> , 2016 , 181, 878-886	7.1	102
213	Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol. <i>Energy</i> , 2018 , 148, 824-838	7.9	97
212	Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel. <i>Applied Energy</i> , 2014 , 113, 722-733	10.7	96
211	Combustion and emissions of 2,5-dimethylfuran addition on a diesel engine with low temperature combustion. <i>Fuel</i> , 2013 , 103, 730-735	7.1	94
210	Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. <i>Combustion and Flame</i> , 2017 , 177, 123-136	5.3	84
209	Experimental study on combustion and emissions of n-butanol/biodiesel under both blended fuel mode and dual fuel RCCI mode. <i>Fuel</i> , 2018 , 226, 240-251	7.1	83
208	Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. <i>Fuel</i> , 2006 , 85, 2046-2056	7.1	83
207	Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine. <i>Energy</i> , 2016 , 115, 539-549	7.9	81
206	Combustion Characteristics and Soot Distributions of Neat Butanol and Neat Soybean Biodiesel. <i>Energy & Distributions of Neat Butanol and Neat Soybean Biodiesel</i> .	4.1	81
205	Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. <i>Combustion and Flame</i> , 2018 , 188, 129-141	5.3	75
204	Effects of Inlet Pressure and Octane Numbers on Combustion and Emissions of a Homogeneous Charge Compression Ignition (HCCI) Engine. <i>Energy & Energy & Ener</i>	4.1	70
203	A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads. <i>Applied Energy</i> , 2016 , 175, 389-402	10.7	68
202	Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends. <i>Energy</i> , 2013 , 62, 215-223	7.9	65
201	A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model. <i>Applied Energy</i> , 2017 , 205, 153-162	10.7	65
200	Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. <i>Energy</i> , 2016 , 114, 542-558	7.9	64
199	Optical study of spray-wall impingement impact on early-injection gasoline partially premixed combustion at low engine load. <i>Applied Energy</i> , 2017 , 185, 708-719	10.7	62
198	Study on ignition and flame development in gasoline partially premixed combustion using multiple optical diagnostics. <i>Combustion and Flame</i> , 2017 , 177, 98-108	5.3	61

197	Influence of temperature and mixture stratification on HCCI combustion using chemiluminescence images and CFD analysis. <i>Applied Thermal Engineering</i> , 2012 , 33-34, 135-143	5.8	60
196	Time-resolved spray, flame, soot quantitative measurement fueling n-butanol and soybean biodiesel in a constant volume chamber under various ambient temperatures. <i>Fuel</i> , 2014 , 133, 317-325	7.1	59
195	Experimental and numerical study on suitable diesel fuel surrogates in low temperature combustion conditions. <i>Fuel</i> , 2012 , 97, 621-629	7.1	58
194	Diesel Engine Combustion Control: Medium or Heavy EGR? 2010,		57
193	Multiple optical diagnostics on effect of fuel stratification degree on reactivity controlled compression ignition. <i>Fuel</i> , 2017 , 202, 688-698	7.1	56
192	Investigation on partially premixed combustion fueled with gasoline and PODE blends in a multi-cylinder heavy-duty diesel engine. <i>Fuel</i> , 2017 , 193, 101-111	7.1	56
191	A comparative study on partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI) in an optical engine. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 4759-4766	5.9	52
190	Development of an n-heptane/toluene/polyaromatic hydrocarbon mechanism and its application for combustion and soot prediction. <i>International Journal of Engine Research</i> , 2013 , 14, 434-451	2.7	52
189	Influence of Fuel and Operating Conditions on Combustion Characteristics of a Homogeneous Charge Compression Ignition Engine. <i>Energy & Energy & 2009</i> , 23, 1422-1430	4.1	51
188	Spray and flame characteristics of wall-impinging diesel fuel spray at different wall temperatures and ambient pressures in a constant volume combustion vessel. <i>Fuel</i> , 2019 , 235, 416-425	7.1	50
187	Regulated and unregulated emissions from a compression ignition engine under low temperature combustion fuelled with gasoline and n-butanol/gasoline blends. <i>Fuel</i> , 2014 , 120, 163-170	7.1	50
186	Development of a reduced toluene reference fuel (TRF)-2,5-dimethylfuran-polycyclic aromatic hydrocarbon (PAH) mechanism for engine applications. <i>Combustion and Flame</i> , 2016 , 165, 453-465	5.3	49
185	Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode. <i>Energy</i> , 2018 , 145, 592-602	7.9	47
184	Charge stratification to control HCCI: Experiments and CFD modeling with n-heptane as fuel. <i>Fuel</i> , 2009 , 88, 354-365	7.1	47
183	Numerical study on the chemical reaction kinetics of n-heptane for HCCI combustion process. <i>Fuel</i> , 2006 , 85, 2605-2615	7.1	43
182	The Effect of PRF Fuel Octane Number on HCCI Operation 2004,		42
181	Experimental and Numerical Study of Methanol/Dimethyl Ether Dual-Fuel Compound Combustion. <i>Energy & Dual Study</i> , 23, 2719-2730	4.1	40
180	Preparation and NO x -assisted soot oxidation activity of a CuOtteO 2 mixed oxide catalyst. <i>Chemical Engineering Science</i> , 2015 , 135, 294-300	4.4	37

(2013-2011)

179	Effects of temperature inhomogeneities on the HCCI combustion in an optical engine. <i>Applied Thermal Engineering</i> , 2011 , 31, 2549-2555	5.8	37	
178	Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion. <i>Applied Energy</i> , 2017 , 189, 187-200	10.7	36	
177	Experimental investigation of the effects of diesel fuel properties on combustion and emissions on a multi-cylinder heavy-duty diesel engine. <i>Energy Conversion and Management</i> , 2018 , 171, 1787-1800	10.6	36	
176	Diesel engine combustion and emissions of 2,5-dimethylfuran-diesel blends with 2-ethylhexyl nitrate addition. <i>Fuel</i> , 2013 , 111, 887-891	7.1	36	
175	The development of low-carbon vehicles in China. <i>Energy Policy</i> , 2011 , 39, 5457-5464	7.2	36	
174	Experimental Study on HCCI Combustion of Dimethyl Ether(DME)/Methanol Dual Fuel 2004 ,		36	
173	Effects of six-carbon alcohols, ethers and ketones with chain or ring molecular structures on diesel low temperature combustion. <i>Energy Conversion and Management</i> , 2016 , 124, 480-491	10.6	36	
172	Primary Combustion Intermediates in Lean and Rich Low-Pressure Premixed Laminar 2-Methylfuran/Oxygen/Argon Flames. <i>Energy & Energy & 2012</i> , 26, 6651-6660	4.1	35	
171	A numerical investigation of the combustion kinetics of reactivity controlled compression ignition (RCCI) combustion in an optical engine. <i>Fuel</i> , 2019 , 241, 753-766	7.1	33	
170	A theoretical and experimental study on the effects of parameters of two-stage turbocharging system on performance of a heavy-duty diesel engine. <i>Applied Thermal Engineering</i> , 2018 , 129, 822-832	5.8	32	
169	Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver. <i>SAE International Journal of Engines</i> , 2015 , 8, 831-845	2.4	32	
168	Thermodynamic analysis of hydrogen production for fuel cells from oxidative steam reforming of methanol. <i>Fuel</i> , 2012 , 97, 805-811	7.1	32	
167	Effects of direct-injection fuel types and proportion on late-injection reactivity controlled compression ignition. <i>Combustion and Flame</i> , 2020 , 211, 445-455	5.3	32	
166	Experimental and kinetic modeling study of a rich and a stoichiometric low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flames. <i>Combustion and Flame</i> , 2015 , 162, 4586-4597	5.3	31	
165	Pilot injection strategy management of gasoline compression ignition (GCI) combustion in a multi-cylinder diesel engine. <i>Fuel</i> , 2018 , 221, 116-127	7.1	30	
164	Effects of late intake valve closing (LIVC) and rebreathing valve strategies on diesel engine performance and emissions at low loads. <i>Applied Thermal Engineering</i> , 2016 , 98, 310-319	5.8	30	
163	Effects of diesel-ethanol-THF blend fuel on the performance and exhaust emissions on a heavy-duty diesel engine. <i>Fuel</i> , 2020 , 271, 117633	7.1	29	
162	A semi-detailed chemical kinetic model of a gasoline surrogate fuel for internal combustion engine applications. <i>Fuel</i> , 2013 , 113, 347-356	7.1	29	

161	Numerical Study of the RCCI Combustion Processes Fuelled with Methanol, Ethanol, n-Butanol and Diesel 2016 ,		29
160	A numerical study of spray/wall impingement based on droplet impact phenomenon. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 112, 401-412	4.9	27
159	Effects of Flame Temperature on PAHs and Soot Evolution in Partially Premixed and Diffusion Flames of a Diesel Surrogate. <i>Energy & Diesels</i> , 2019, 33, 11821-11829	4.1	26
158	The effect of combustion chamber geometry on in-cylinder flow and combustion process in a stoichiometric operation natural gas engine with EGR. <i>Applied Thermal Engineering</i> , 2018 , 129, 199-211	5.8	26
157	Kinetic and Numerical Study on the Effects of Di-tert-butyl Peroxide Additive on the Reactivity of Methanol and Ethanol. <i>Energy & Discounty of Methanol and Ethanol Energy & Discounty of Methanol and Ethanol Energy & Discounty of Methanol and Ethanol Energy & Discounty of Methanol Energy & Discounty & Discoun</i>	4.1	26
156	Experimental and kinetic modeling studies of low-pressure premixed laminar 2-methylfuran flames. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1295-1302	5.9	26
155	Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel. <i>Energy</i> , 2013 , 51, 291-296	7.9	26
154	Experimental Study on Homogeneous Charge Compression Ignition Combustion With Fuel of Dimethyl Ether and Natural Gas. <i>Journal of Engineering for Gas Turbines and Power</i> , 2006 , 128, 414-420	1.7	26
153	Effects of charge concentration and reactivity stratification on combustion and emission characteristics of a PFI-DI dual injection engine under low load condition. <i>Fuel</i> , 2018 , 231, 26-36	7.1	25
152	A theoretical investigation of the effects of the low-temperature reforming products on the combustion of n-heptane in an HCCI engine and a constant volume vessel. <i>Applied Energy</i> , 2016 , 181, 132-139	10.7	24
151	Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks. <i>Energy and AI</i> , 2020 , 2, 100021	12.6	23
150	Investigation on the Potential of High Efficiency for Internal Combustion Engines. <i>Energies</i> , 2018 , 11, 513	3.1	23
149	Study on the flame development patterns and flame speeds from homogeneous charge to stratified charge by fueling n-heptane in an optical engine. <i>Combustion and Flame</i> , 2019 , 199, 213-229	5.3	23
148	Gasoline compression ignition operation on a multi-cylinder heavy duty diesel engine. <i>Fuel</i> , 2018 , 215, 339-351	7.1	23
147	The effects of LIVC Miller cycle on the combustion characteristics and thermal efficiency in a stoichiometric operation natural gas engine with EGR. <i>Applied Thermal Engineering</i> , 2017 , 122, 439-450	5.8	22
146	An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds. <i>Energy Conversion and Management</i> , 2016 , 124, 399-413	10.6	22
145	Improvement of high load performance in gasoline compression ignition engine with PODE and multiple-injection strategy. <i>Fuel</i> , 2018 , 234, 1459-1468	7.1	22
144	Multidimensional Numerical Simulation on Dimethyl Ether/Methanol Dual-Fuel Homogeneous Charge Compression Ignition (HCCI) Engine Combustion and Emission Processes. <i>Energy & Energy & </i>	4.1	22

143	Experimental investigations of gasoline partially premixed combustion with an exhaust rebreathing valve strategy at low loads. <i>Applied Thermal Engineering</i> , 2016 , 103, 832-841	5.8	22	
142	Experimental and numerical investigation of the effects of combustion chamber reentrant level on combustion characteristics and thermal efficiency of stoichiometric operation natural gas engine with EGR. <i>Applied Thermal Engineering</i> , 2017 , 123, 1473-1483	5.8	21	
141	N2O formation in the selective catalytic reduction of NOx with NH3 on a CeMoOx catalyst. <i>Applied Catalysis A: General</i> , 2015 , 505, 8-15	5.1	21	
140	PAHs formation simulation in the premixed laminar flames of TRF with alcohol addition using a semi-detailed combustion mechanism. <i>Fuel</i> , 2015 , 155, 44-54	7.1	20	
139	Effect of EGR on HCCI Combustion fuelled with Dimethyl Ether (DME) and Methanol Dual-Fuels 2005 ,		20	
138	Optical diagnostics on the reactivity controlled compression ignition (RCCI) with micro direct-injection strategy. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 4767-4775	5.9	19	
137	A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics. <i>Energy</i> , 2018 , 162, 744-752	7.9	18	
136	An Experimental and Numerical Study on the Effects of Fuel Properties on the Combustion and Emissions of Low-Temperature Combustion Diesel Engines. <i>Combustion Science and Technology</i> , 2014 , 186, 1795-1815	1.5	18	
135	Effects of Dual Loop EGR on Performance and Emissions of a Diesel Engine 2015,		18	
134	Development of a reduced n-butanol/biodiesel mechanism for a dual fuel engine. <i>Fuel</i> , 2015 , 157, 87-	96 _{7.1}	18	
133	Direct numerical simulation of n-heptane/air auto-ignition with thermal and charge stratifications under partially-premixed charge compression ignition (PCCI) engine related conditions. <i>Applied Thermal Engineering</i> , 2016 , 104, 516-526	5.8	18	
132	Experimental and Modeling Investigations on Soot Formation of Ethanol, n-Butanol, 2,5-Dimethylfuran, and Biodiesel in Diesel Engines. <i>Energy & Energy & Ene</i>	4.1	17	
131	Spray characteristics of gasoline/PODE and diesel/PODE blends in a constant volume chamber. <i>Applied Thermal Engineering</i> , 2019 , 159, 113850	5.8	17	
130	Numerical study of spray micro-droplet impinging on dry/wet wall. <i>Applied Thermal Engineering</i> , 2016 , 95, 1-9	5.8	17	
129	Experimental Study of Multiple Injections and Coupling Effects of Multi-Injection and EGR in a HD Diesel Engine 2009 ,		17	
128	Effects of exhaust gas recirculation on combustion and emissions of a homogeneous charge compression ignition engine fuelled with primary reference fuels. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</i> , 2007 , 221, 197-213	1.4	17	
127	Turbocharged diesel/CNG Dual-fuel Engines with Intercooler: Combustion, Emissions and Performance 2003 ,		17	
126	Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode. <i>Applied Energy</i> , 2017 , 192, 59-70	10.7	16	

125	Effects of injection strategies on low-speed marine engines using the dual fuel of high-pressure direct-injection natural gas and diesel. <i>Energy Science and Engineering</i> , 2019 , 7, 1994-2010	3.4	16
124	Simultaneous Measurement of Natural Flame Luminosity and Emission Spectra in a RCCI Engine under Different Fuel Stratification Degrees. <i>SAE International Journal of Engines</i> , 2017 , 10, 1155-1162	2.4	16
123	Influence of fuel properties on multi-cylinder PPC operation over a wide range of EGR and operating conditions. <i>Fuel</i> , 2018 , 215, 352-362	7.1	16
122	The effects of DI fuel properties on the combustion and emissions characteristics of RCCI combustion. <i>Fuel</i> , 2018 , 227, 457-468	7.1	16
121	Optical diagnostics on the effects of fuel properties and coolant temperatures on combustion characteristic and flame development progress from HCCI to CDC via PPC. <i>Fuel</i> , 2020 , 269, 117441	7.1	15
120	Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants 2012 ,		15
119	Thermal efficiency improvement of PODE/Gasoline dual-fuel RCCI high load operation with EGR and air dilution. <i>Applied Thermal Engineering</i> , 2019 , 159, 113763	5.8	14
118	A Skeletal Mechanism of a Biodiesel Surrogate Fuel for Compression Ignition Engines. <i>Energy & Energy </i>	4.1	14
117	A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel 2012 ,		14
116	Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations 2011 ,		14
115	An Experimental Investigation on the Spray Characteristics of Dimethyl Ether(DME) 2001,		14
114	Numerical investigation of reactivity controlled compression ignition (RCCI) using different multi-component surrogate combinations of diesel and gasoline. <i>Applied Energy</i> , 2019 , 242, 462-479	10.7	13
113	Investigation on the dual-fuel active-thermal atmosphere combustion strategy based on optical diagnostics and numerical simulations. <i>Fuel</i> , 2020 , 276, 118023	7.1	13
112	A numerical study on the chemical kinetics process during auto-ignition of n-heptane in a direct injection compression ignition engine. <i>Applied Energy</i> , 2018 , 212, 909-918	10.7	13
111	A Reduced Chemical Kinetic Mechanism for Low Temperature Diesel Combustion and Soot Emissions. <i>Combustion Science and Technology</i> , 2014 , 186, 1975-1990	1.5	13
110	Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing. <i>SAE International Journal of Engines</i> , 2017 , 10, 1482-1490	2.4	13
109	Low temperature combustion of ethylene in a carbon dioxide stream over a cordierite monolith-supported CuMn Hopcalite catalyst. <i>Applied Catalysis A: General</i> , 2012 , 427-428, 73-78	5.1	13
108	Study of dimethyl ether homogeneous charge compression ignition combustion process using a multi-dimensional computational fluid dynamics model. <i>International Journal of Thermal Sciences</i> , 2009 , 48, 1814-1822	4.1	13

107	EXPERIMENTAL STUDY ON HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION WITH PRIMARY REFERENCE FUEL. <i>Combustion Science and Technology</i> , 2007 , 179, 2539-2559	5	13
106	A comparative numerical investigation of reactivity controlled compression ignition combustion using Large Eddy Simulation and Reynolds-Averaged Navier-Stokes approaches. <i>Fuel</i> , 2019 , 257, 116023 ⁷	.1	12
105	Direct numerical simulation of H2/air combustion with composition stratification in a constant volume enclosure relevant to HCCI engines. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 13758-137	7 70	12
104	Study on Fuel Distribution of Wall-Impinging Diesel Spray under Different Wall Temperatures by Laser-Induced Exciplex Fluorescence (LIEF). <i>Energies</i> , 2018 , 11, 1249	1	12
103	Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols. Frontiers in Mechanical Engineering, 2015, 1,	.6	12
102	PRIMARY COMBUSTION INTERMEDIATES IN LOW-PRESSURE PREMIXED LAMINAR 2,5-DIMETHYLFURAN/OXYGEN/ARGON FLAMES. <i>Combustion Science and Technology</i> , 2014 , 186, 355-376	.5	12
101	Numerical investigation on the combustion characteristics of PODE3/gasoline RCCI and high load extension. <i>Fuel</i> , 2020 , 263, 116366	.1	12
100	Development of the ignition delay prediction model of n-butane/hydrogen mixtures based on artificial neural network. <i>Energy and AI</i> , 2020 , 2, 100033	2.6	12
99	A Review of Thermal Management System and Control Strategy for Automotive Engines. <i>Journal of Energy Engineering - ASCE</i> , 2021 , 147, 03121001	7	12
98	Study on the Double Injection Strategy of Gasoline Partially Premixed Combustion under a Light-Duty Optical Engine. <i>SAE International Journal of Engines</i> , 2016 , 9, 2185-2193	4	12
97	Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence. Optics Express, 2017, 25, 25809-25818	3	11
96	Effects of Fuel Volatility on Combustion and Emissions over a Wide Range of EGR Rates in a Diesel Engine 2014 ,		11
95	The Influence of Boost Pressure and Fuel Chemistry on Combustion and Performance of a HCCI Engine 2008 ,		11
94	Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network. <i>Combustion and Flame</i> , 2022 , 237, 111852	3	11
93	Study on single-fuel reactivity controlled compression ignition combustion through low temperature reforming. <i>Combustion and Flame</i> , 2019 , 199, 429-440	3	10
92	Experimental Study on the Combustion Process of Dimethyl Ether (DME) 2003,		10
91	Effects of Gasoline Octane Number on Fuel Consumption and Emissions in Two Vehicles Equipped with GDI and PFI Spark-Ignition Engine. <i>Journal of Energy Engineering - ASCE</i> , 2020 , 146, 04020069	7	10
90	Effect of the stagnation plate on PAHs, soot and OH distributions in partially premixed laminar flames fueled with a blend of n-heptane and toluene. <i>Combustion and Flame</i> , 2021 , 227, 52-64	3	10

89	Multiple optical diagnostics on effects of fuel properties on spray flames under oxygen-enriched conditions. <i>Fuel</i> , 2021 , 291, 120129	7.1	10
88	The impact of low temperature reforming (LTR) products of fuel-rich n-heptane on compression ignition engine combustion. <i>Fuel</i> , 2018 , 229, 11-21	7.1	10
87	Effects of turbulence-chemistry interactions on auto-ignition and flame structure for n-dodecane spray combustion. <i>Combustion Theory and Modelling</i> , 2019 , 23, 907-934	1.5	9
86	Investigation of the chemical kinetics process of diesel combustion in a compression ignition engine using the large eddy simulation approach. <i>Fuel</i> , 2020 , 270, 117544	7.1	9
85	Numerical study of the combustion mechanism of a homogeneous charge compression ignition engine fuelled with dimethyl ether and methane, with a detailed kinetics model. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</i> , 2005 , 219, 1213-1223	1.4	9
84	Kinetic Study of the Ignition Process of Methane/n-Heptane Fuel Blends under High-Pressure Direct-Injection Natural Gas Engine Conditions. <i>Energy & Energy </i>	4.1	9
83	Numerical investigation on combustion system optimization of stoichiometric operation natural gas engine based on knocking boundary extension. <i>Fuel</i> , 2021 , 290, 120092	7.1	9
82	Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine 2016 ,		9
81	Experimental study on the partially premixed combustion (PPC) fueled with n-butanol. <i>Fuel</i> , 2019 , 257, 116000	7.1	8
80	A Numerical Investigation on the Chemical Kinetics Process of a Reacting n-Dodecane Spray Flame under Compression Ignition Combustion Condition. <i>Energy & Dodge State S</i>	4.1	8
79	Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 3876-388	o ^{6.7}	8
78	Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine 2017 ,		8
77	An Investigation of Different Ported Fuel Injection Strategies and Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging 2010 ,		8
76	A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel 2016 ,		8
75	Effects of low-temperature reforming products of PRF50 on combustion and emission characteristics in an HCCI engine. <i>Applied Thermal Engineering</i> , 2019 , 151, 451-458	5.8	7
74	Numerical investigation on low octane gasoline-like fuel compression ignition combustion at high load. <i>Fuel</i> , 2020 , 270, 117532	7.1	7
73	Effect of Wall Temperature on Acetylene Diffusion FlameWall Interaction Based on Optical Diagnostics and CFD Simulation. <i>Energies</i> , 2018 , 11, 1264	3.1	7
72	Effects of Pilot Injection Strategy on Combustion and Emission Characteristics in Gasoline Compression Ignition. <i>Energy Procedia</i> , 2017 , 142, 1267-1273	2.3	7

71	Reaction Kinetics of Ethylene Combustion in a Carbon Dioxide Stream over a CuMnD Hopcalite Catalyst in Low Temperature Range. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 686-691	3.9	7	
70	An Investigation on a New Reduced Chemical Kinetic Model of n-heptane for HCCI Combustion. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220, 991-1002	1.4	7	
69	Experimental Study on Homogeneous Charge Compression Ignition Operation by Burning Dimethyl Ether and Methanol. <i>International Journal of Green Energy</i> , 2007 , 4, 283-300	3	7	
68	Simulating the Homogeneous Charge Compression Ignition Process Using a Detailed Kinetic Model for Dimethyl Ether (DME) and Methane Dual Fuel 2004 ,		7	
67	Effects of flame propagation speed on knocking and knock-limited combustion in a downsized spark ignition engine. <i>Fuel</i> , 2021 , 293, 120407	7.1	7	
66	Analysis of knocking combustion with methanol/iso-octane and ethanol/iso-octane blends in a spark-ignition engine. <i>Fuel</i> , 2021 , 284, 118979	7.1	7	
65	Effect of soybean oil/PODE/ethanol blends on combustion and emissions on a heavy-duty diesel engine. <i>Fuel</i> , 2021 , 288, 119625	7.1	7	
64	Development of a simplified n-heptane/methane model for high-pressure direct-injection natural gas marine engines. <i>Frontiers in Energy</i> , 2021 , 15, 405-420	2.6	7	
63	Analysis of near wall combustion and pollutant migration after spray impingement. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 141, 569-579	4.9	6	
62	A Theoretical Investigation of the Combustion of PRF90 under the Flexible Cylinder Engine Mode 2017 ,		6	
61	Combustion Characteristics of Wall-Impinging Diesel Fuel Spray under Different Wall Temperatures 2017 ,		6	
60	Methyl Radical Imaging in Methane-Air Flames Using Laser Photofragmentation-Induced Fluorescence. <i>Applied Spectroscopy</i> , 2015 , 69, 1152-6	3.1	6	
59	Experimental Investigation of Injection Strategies on Low Temperature Combustion Fuelled with Gasoline in a Compression Ignition Engine. <i>Journal of Chemistry</i> , 2015 , 2015, 1-10	2.3	6	
58	Numerical Simulation on Combustion and Emission Processes of Premixed/Direct-Injected Fuel Stratification Combustion. <i>International Journal of Green Energy</i> , 2010 , 7, 498-515	3	6	
57	Experimental Study on the Effects of EGR and Octane Number of PRF Fuel on Combustion and Emission Characteristics of HCCI Engines 2005 ,		6	
56	Numerical investigation of the effect of thermal barrier coating on combustion and emissions in a diesel engine. <i>Applied Thermal Engineering</i> , 2021 , 186, 116497	5.8	6	
55	Gasoline spray characteristics using a high pressure common rail diesel injection system by the method of laser induced exciplex fluorescence. <i>Fuel</i> , 2021 , 302, 121174	7.1	6	
54	A comparison study on the combustion and sooting characteristics of base engine oil and n-dodecane in laminar diffusion flames. <i>Applied Thermal Engineering</i> , 2019 , 158, 113812	5.8	5	

53	A theoretical investigation of the effects of temperature, pressure, and equivalence ratio on the oxidation and reformed products of PRF90 under the flexible cylinder engine mode. <i>Applied Thermal Engineering</i> , 2018 , 137, 513-520	5.8	5
52	Theoretical Investigation of the Combustion of PRF90 under the Flexible Cylinder Engine Mode: The Effects of Cooling Strategies on the Mode. <i>Energy & Dodge Strategies on The Mode Str</i>	4.1	5
51	A Comparative Study on the Fuel Economy Improvement of a Natural Gas SI Engine at the Lean Burn and the Stoichiometric Operation both with EGR under the Premise of Meeting EU6 Emission Legislation 2015 ,		5
50	Experimental and Modeling Study of Biodiesel Surrogates Combustion in a CI Engine 2013,		5
49	Numerical Simulation of the Effects of Charge Stratification on Combustion and Emissions. <i>Energy & Emp; Fuels</i> , 2007 , 21, 2018-2026	4.1	5
48	Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime. <i>Applied Energy</i> , 2020 , 275, 115320	10.7	5
47	Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes 2016 ,		5
46	Effects of octane sensitivity on knocking combustion under modern SI engine operating conditions. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5897-5904	5.9	5
45	Optical diagnostics on the effects of reverse reactivity stratification on the flame development in dual-fuel combustion. <i>Fuel</i> , 2021 , 287, 119500	7.1	5
44	Numerical investigation on the combustion and emission characteristics of a heavy-duty natural gas-diesel dual-fuel engine. <i>Fuel</i> , 2021 , 300, 120998	7.1	5
43	Optical measurements of temperature fields in sooting flames: influence of soot self-absorption. <i>Applied Physics B: Lasers and Optics</i> , 2019 , 125, 1	1.9	4
42	Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 4487-4495	5.9	4
41	An Investigation of Different Combustion Chamber Configuration, Intake Temperature, and Coolant Temperature in a HCCI Optical Engine 2011 ,		4
40	Experimental study of effects of oxygen concentration on combustion and emissions of diesel engine. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 1527-1534		4
39	Mechanism of Oxygen Concentration Effects on Combustion Process and Emissions of Diesel Engine. <i>Energy & Diesel</i> 8 (2009), 23, 5835-5845	4.1	4
38	An Investigation on the Effects of Fuel Chemistry and Engine Operating Conditions on HCCI Engine 2008 ,		4
37	Investigation of the Effects of Injection Timing on Thermo-Atmosphere Combustion of Methanol 2007 ,		4
36	A Numerical Investigation on Effects of Charge Stratification on HCCI Combustion 2007 ,		4

35	Natural Flame Luminosity and Emission Spectra of Diesel Spray Flame under Oxygen-Enriched Condition in an Optical Constant Volume Vessel 2018 ,		4	
34	Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity. <i>Frontiers in Mechanical Engineering</i> , 2015 , 1,	2.6	3	
33	Effects of Fuel Physical and Chemical Properties on Combustion and Emissions on Both Metal and Optical Diesel Engines and on a Partially Premixed Burner 2015 ,		3	
32	The Design and Optimized Combination of Combustion Modesover Full-Load Range in a Multi-cylinder Light-duty Engine 2013 ,		3	
31	Investigation of the Combustion Kinetics Process in a High-Pressure Direct Injection Natural Gas Marine Engine. <i>Energy & Direct Section</i> 2021, 35, 6785-6797	4.1	3	
30	Theoretical analysis on the exergy destruction mechanisms and reduction under LTC relevant conditions. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 4797-4804	5.9	3	
29	On the entropy generation and exergy loss of laminar premixed flame under engine-relevant conditions. <i>Fuel</i> , 2021 , 283, 119245	7.1	3	
28	Development of a reduced primary reference fuel-PODE3-methanol-ethanol-n-butanol mechanism for dual-fuel engine simulations. <i>Energy</i> , 2021 , 235, 121439	7.9	3	
27	A Numerical Investigation on NO2 Formation in a Natural GasDiesel Dual Fuel Engine. <i>Journal of Engineering for Gas Turbines and Power</i> , 2018 , 140,	1.7	2	
26	Prediction Accuracy and Efficiency of the n-Heptane Mechanism at Different Reduction Levels. <i>Energy & Different Reduction Levels</i> .	4.1	2	
25	A Numerical Investigation on NO2 Formation in a Natural Gas-Diesel Dual Fuel Engine 2017,		2	
24	Effects of Gasoline Viscosity and Injection Pressure on the Performance and Emissions of a Multi-Cylinder Partially Premixed Combustion Engine. <i>The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines</i> , 2017 , 2017.9, C	309	2	
23	Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine		2	
22	Combined effects of fuel reactivity and intake thermodynamic conditions on heat release and emissions of compression ignition combustion. <i>Fuel</i> , 2020 , 282, 118859	7.1	2	
21	Model Based Control Method for Diesel Engine Combustion. <i>Energies</i> , 2020 , 13, 6046	3.1	2	
20	Investigations on the effects of low temperature reforming of n-heptane/n-butanol blends on the flame development progress and combustion chemical kinetics. <i>Fuel</i> , 2021 , 290, 120001	7.1	2	
19	Experimental study on particle size distribution of gasoline compression ignition (GCI) at low-load condition. <i>Fuel</i> , 2021 , 294, 120502	7.1	2	
18	Experimental and numerical study on the impact of low-temperature reforming products of BD60 on engine combustion and emission characteristics. <i>Fuel</i> , 2021 , 288, 119621	7.1	2	

17	Simultaneous soot multi-parameter fields predictions in laminar sooting flames from neural network-based flame luminosity measurement I: methodology. <i>Optics Letters</i> , 2021 , 46, 3869-3872	3	2
16	Influence of thermal barrier coating on partially premixed combustion in internal combustion engine. <i>Fuel</i> , 2021 , 303, 121259	7.1	2
15	Experimental Investigation on the Effects of Injection Strategy on Combustion and Emission in a Heavy-Duty Diesel Engine Fueled with Gasoline 2017 ,		1
14	Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration 2011 ,		1
13	Optical diagnostics and chemical kinetic analysis on the dual-fuel combustion of methanol and high reactivity fuels. <i>Fuel</i> , 2022 , 312, 122949	7.1	1
12	Identification of factors affecting exergy destruction and engine elliency of various classes of fuel. <i>Energy</i> , 2020 , 211, 118897	7.9	1
11	Optical investigation on polyoxymethylene dimethyl ethers spray flame at different oxygen levels in a constant volume vessel. <i>Science China Technological Sciences</i> , 2021 , 64, 1611-1623	3.5	1
10	Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion 2018 ,		1
9	Supercritical thermophysical properties prediction of multi-component hydrocarbon fuels based on artificial neural network models. <i>Science China Technological Sciences</i> ,1	3.5	1
8	Effects of intake high-pressure compressed air on thermal-work conversion in a stationary diesel engine. <i>International Journal of Green Energy</i> ,1-14	3	1
7	Effects of scavenging port angle and combustion chamber geometry on combustion and emmission of a high-pressure direct-injection natural gas marine engine. <i>International Journal of Green Energy</i> ,1-13	3	1
6	Study on the influence mechanism of mixture stratification on GCI combustion and the compound injection strategy under high load operation. <i>Energy Science and Engineering</i> , 2021 , 9, 2434	3.4	O
5	Experimental investigation on the effects of octane sensitivity on partially premixed low-temperature combustion. <i>Fuel</i> , 2021 , 287, 119488	7.1	0
4	Experimental and kinetic modeling studies of polyoxymethylene dimethyl ether (PODE) pyrolysis in jet stirred reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 159, 105332	6	O
3	Thermodynamic modeling of trans/supercritical fuel sprays in internal combustion engines based on a generalized cubic equation of state. <i>Fuel</i> , 2022 , 307, 121894	7.1	0
2	Simulation of Automotive Engine Phase Signal Based on Closed-Loop Strategy. <i>Transactions of Tianjin University</i> , 2017 , 23, 394-400	2.9	
1	A Mapping Approach for Efficient CFD Simulation of Low-Speed Large-Bore Marine Engine with Pre-Chamber and Dual-Fuel Operation. <i>Energies</i> , 2021 , 14, 6126	3.1	