
David Canovas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A target fishing study to spot possible biological targets of fusaric acid: Inhibition of protein kinase-A and insights on the underpinning mechanisms. Food and Chemical Toxicology, 2022, 159, 112663.	3.6	6
2	Identification of an acetyl esterase in the supernatant of the environmental strain Bacillus sp. HR21-6. Biochimie, 2022, 198, 48-59.	2.6	0
3	An <i>arsRB</i> resistance operon confers tolerance to arsenite in the environmental isolate <i>Terribacillus</i> sp. AE2B 122. FEMS Microbiology Ecology, 2021, 97, .	2.7	2
4	Evidence for an arginineâ€dependent route for the synthesis of <scp>NO</scp> in the model filamentous fungus <i>Aspergillus nidulans</i> . Environmental Microbiology, 2021, 23, 6924-6939.	3.8	9
5	A Hybrid In Silico/In Vitro Target Fishing Study to Mine Novel Targets of Urolithin A and B: A Step Towards a Better Comprehension of Their Estrogenicity. Molecular Nutrition and Food Research, 2020, 64, e2000289.	3.3	10
6	Nitric oxide homeostasis is required for light-dependent regulation of conidiation in Aspergillus. Fungal Genetics and Biology, 2020, 137, 103337.	2.1	14
7	The Cell Wall Integrity Pathway Contributes to the Early Stages of <i>Aspergillus fumigatus</i> Asexual Development. Applied and Environmental Microbiology, 2020, 86, .	3.1	20
8	Alternaria toxins as casein kinase 2 inhibitors and possible consequences for estrogenicity: a hybrid in silico/in vitro study. Archives of Toxicology, 2020, 94, 2225-2237.	4.2	19
9	An In Silico Target Fishing Approach to Identify Novel Ochratoxin A Hydrolyzing Enzyme. Toxins, 2020, 12, 258.	3.4	18
10	Hybrid in silico/in vitro target fishing to assign function to "orphan―compounds of food origin – The case of the fungal metabolite atromentin. Food Chemistry, 2019, 270, 61-69.	8.2	11
11	Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and other Xenobiotics of Food Origin: Current Scenario and Future Perspectives. Toxins, 2019, 11, 640.	3.4	51
12	Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of <i>Neurospora crassa</i> . Genetics, 2019, 212, 691-710.	2.9	28
13	Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants. BMC Biology, 2019, 17, 88.	3.8	18
14	An integrated in silico/in vitro approach to assess the xenoestrogenic potential of Alternaria mycotoxins and metabolites. Food Chemistry, 2018, 248, 253-261.	8.2	57
15	Evolution of asexual and sexual reproduction in the aspergilli. Studies in Mycology, 2018, 91, 37-59.	7.2	109
16	On the Mechanism of Action of Anti-Inflammatory Activity of Hypericin: An In Silico Study Pointing to the Relevance of Janus Kinases Inhibition. Molecules, 2018, 23, 3058.	3.8	20
17	Toxicodynamics of Mycotoxins in the Framework of Food Risk Assessment—An In Silico Perspective. Toxins, 2018, 10, 52.	3.4	29
18	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417

DAVID CANOVAS

#	Article	IF	CITATIONS
19	An in silico perspective on the toxicodynamic of tetrodotoxin and analogues – A tool for supporting the hazard identification. Toxicon, 2017, 138, 107-118.	1.6	7
20	High-throughput format for the phenotyping of fungi on solid substrates. Scientific Reports, 2017, 7, 4289.	3.3	22
21	A Straightforward Access to New Families of Lipophilic Polyphenols by Using Lipolytic Bacteria. PLoS ONE, 2016, 11, e0166561.	2.5	4
22	Nitric oxide synthesis by nitrate reductase is regulated during development in <scp><i>A</i></scp> <i>spergillus</i> . Molecular Microbiology, 2016, 99, 15-33.	2.5	60
23	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	3.9	175
24	Nitric oxide in fungi: is there NO light at the end of the tunnel?. Current Genetics, 2016, 62, 513-518.	1.7	79
25	Hazard identification of cis/trans -zearalenone through the looking-glass. Food and Chemical Toxicology, 2015, 86, 65-71.	3.6	24
26	Expanding the chemical space of human serine racemase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4297-4303.	2.2	22
27	Hazard assessment through hybrid in vitro / in silico approach: The case of zearalenone. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 275-86.	1.5	28
28	Selection and Characterization of Biofuel-Producing Environmental Bacteria Isolated from Vegetable Oil-Rich Wastes. PLoS ONE, 2014, 9, e104063.	2.5	22
29	The Histone Acetyltransferase GcnE (GCN5) Plays a Central Role in the Regulation of <i>Aspergillus</i> Asexual Development. Genetics, 2014, 197, 1175-1189.	2.9	79
30	Flow Cytometry of Microencapsulated Colonies for Genetics Analysis of Filamentous Fungi. G3: Genes, Genomes, Genetics, 2014, 4, 2271-2278.	1.8	19
31	Cell-Type–Specific Transcriptional Profiles of the Dimorphic Pathogen Penicillium marneffei Reflect Distinct Reproductive, Morphological, and Environmental Demands. G3: Genes, Genomes, Genetics, 2013, 3, 1997-2014.	1.8	25
32	Regulation of Conidiation by Light in <i>Aspergillus nidulans</i> . Genetics, 2011, 188, 809-822.	2.9	127
33	The Fungal Type II Myosin in Penicillium marneffei, MyoB, Is Essential for Chitin Deposition at Nascent Septation Sites but Not Actin Localization. Eukaryotic Cell, 2011, 10, 302-312.	3.4	17
34	Microbial responses to environmental arsenic. BioMetals, 2009, 22, 117-130.	4.1	309
35	Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis. Fungal Genetics and Biology, 2009, 46, 190-200.	2.1	27
36	Osmotic stress limits arsenic hypertolerance in Aspergillus sp. P37. FEMS Microbiology Ecology, 2007, 61, 258-263.	2.7	14

DAVID CANOVAS

#	Article	IF	CITATIONS
37	The Biology of the Thermally Dimorphic Fungal Pathogen Penicillium marneffei. , 2007, , 213-226.		5
38	Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Molecular Microbiology, 2006, 62, 1725-1738.	2.5	43
39	Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida. Molecular Microbiology, 2006, 62, 1643-1654.	2.5	19
40	Osmoprotection of Salmonella enterica serovar Typhimurium by Nγ-acetyldiaminobutyrate, the precursor of the compatible solute ectoine. Systematic and Applied Microbiology, 2006, 29, 626-633.	2.8	18
41	Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. Systematic and Applied Microbiology, 2005, 28, 571-581.	2.8	28
42	The Role of Thiol Species in the Hypertolerance of Aspergillus sp. P37 to Arsenic. Journal of Biological Chemistry, 2004, 279, 51234-51240.	3.4	71
43	Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environmental Microbiology, 2003, 5, 133-138.	3.8	45
44	Arsenate transport and reduction in the hyper-tolerant fungus Aspergillus sp. P37. Environmental Microbiology, 2003, 5, 1087-1093.	3.8	30
45	Heavy metal tolerance and metal homeostasis inPseudomonas putidaas revealed by complete genome analysis. Environmental Microbiology, 2003, 5, 1242-1256.	3.8	213
46	Role of Trehalose in Growth at High Temperature of Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2001, 183, 3365-3371.	2.2	56
47	Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174 International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 1457-1462.	1.7	134
48	Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043 The EMBL accession number for the sequence reported in this paper is AJ238780 Microbiology (United Kingdom), 2000, 146, 455-463.	1.8	71
49	Role of N Î ³ -Acetyldiaminobutyrate as an Enzyme Stabilizer and an Intermediate in the Biosynthesis of Hydroxyectoine. Applied and Environmental Microbiology, 1999, 65, 3774-3779.	3.1	75
50	Characterization of the Genes for the Biosynthesis of the Compatible Solute Ectoine in the Moderately Halophilic Bacterium Halomonas elongata DSM 3043. Systematic and Applied Microbiology, 1998, 21, 487-497.	2.8	91
51	Isolation and Characterization of Salt-sensitive Mutants of the Moderate Halophile Halomonas elongata and Cloning of the Ectoine Synthesis Genes. Journal of Biological Chemistry, 1997, 272, 25794-25801.	3.4	96
52	Salt-Sensitive and Auxotrophic Mutants of Halomonas elongata and H. meridiana by Use of Hydroxylamine Mutagenesis. Current Microbiology, 1997, 34, 85-90.	2.2	11
53	Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. Journal of Bacteriology, 1996, 178, 7221-7226.	2.2	91
54	Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas. Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Molecular Genetics and Genomics, 1995, 246, 411-418.	2.4	46