
Jean-Paul Viricelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886019/publications.pdf Version: 2024-02-01

IFAN-DALL VIDICELLE

#	Article	IF	CITATIONS
1	An innovative method for soot deposit quantification using a CO2 sensor: Application to fire studies in research facilities. Journal of Aerosol Science, 2022, , 106005.	3.8	Ο
2	In Situ Measurement of Electrical Behavior of Metal/Oxide System During Zirconium Oxidation at 850°C. Oxidation of Metals, 2021, 95, 65-83.	2.1	1
3	Development of a selective ammonia YSZ-based sensor and modeling of its response. Sensors and Actuators B: Chemical, 2021, 338, 129833.	7.8	8
4	Quantification of soot deposit on a resistive sensor: Proposal of an experimental calibration protocol. Journal of Aerosol Science, 2021, 156, 105783.	3.8	4
5	How does the dielectrophoresis affect the soot dendrite growth on resistive sensors?. Sensors and Actuators A: Physical, 2021, 327, 112729.	4.1	1
6	Ag-based electrocatalysts for ethylene epoxidation. Electrochimica Acta, 2021, 394, 139018.	5.2	4
7	Catalytic and Electrochemical Properties of Ag Infiltrated Perovskite Coatings for Propene Deep Oxidation. Catalysts, 2020, 10, 729.	3.5	2
8	Modeling of the signal of a resistive soot sensor, influence of the soot nature and of the polarization voltage. Sensors and Actuators B: Chemical, 2019, 298, 126820.	7.8	9
9	Ethylene epoxidation on Ag/YSZ electrochemical catalysts: Understanding of oxygen electrode reactions. Electrochemistry Communications, 2019, 105, 106495.	4.7	5
10	A novel approach to a fully inkjet printed SnO ₂ -based gas sensor on a flexible foil. Journal of Materials Chemistry C, 2019, 7, 12343-12353.	5.5	46
11	Modified SnO2-APTES gas sensor for selective ammonia detection at room temperature. Materials Today: Proceedings, 2019, 6, 319-322.	1.8	7
12	Responses of a Resistive Soot Sensor to Different Mono-Disperse Soot Aerosols. Sensors, 2019, 19, 705.	3.8	8
13	Enhancing oxygen reduction reaction of YSZ/La2NiO4+δ using an ultrathin La2NiO4+δ interfacial layer. Journal of Alloys and Compounds, 2018, 746, 413-420.	5.5	25
14	Simulation of nanosecond IR laser annealing of cerium gadolinium oxide. Journal of the European Ceramic Society, 2018, 38, 3875-3880.	5.7	0
15	Electrochemical promotion of propylene combustion on Ag catalytic coatings. Catalysis Communications, 2018, 104, 28-31.	3.3	6
16	Ambient temperature selective ammonia gas sensor based on SnO2-APTES modifications. Sensors and Actuators B: Chemical, 2018, 256, 440-447.	7.8	48
17	Synthesis and characterization of tin dioxide thick film modified by APTES in vapor and liquid phases. Journal of Materials Science, 2018, 53, 727-738.	3.7	17
18	Soot Particle Classifications in the Context of a Resistive Sensor Study. Proceedings (mdpi), 2018, 2, .	0.2	2

#	Article	IF	CITATIONS
19	Study of Two Vanadium Based Materials as Working Electrode for Developing A Selective Mixed-Potential Ammonia Sensor. Proceedings (mdpi), 2018, 2, 770.	0.2	1
20	Rational Development of IT-SOFC Electrodes Based on the Nanofunctionalization of La _{0.6} Sr _{0.4} Ga _{0.3} Fe _{0.7} O ₃ with Oxides. PART 1: Cathodes by Means of Iron Oxide. ACS Applied Energy Materials, 2018, 1, 6840-6850.	5.1	17
21	Development of a normalized multi-sensors system for low cost on-line atmospheric pollution detection. Sensors and Actuators B: Chemical, 2017, 241, 1235-1243.	7.8	36
22	Sensitive and Selective Ammonia Gas Sensor Based on Molecularly Modified SnO2. Proceedings (mdpi), 2017, 1, .	0.2	8
23	Study of YSZ Electrolyte Inks for Preparation of Screen-Printed Mixed-Potential Sensors for Selective Detection of NOx and NH3. Proceedings (mdpi), 2017, 1, .	0.2	Ο
24	Synthesis and Inkjet Printing of SnO2 Ink on a Flexible Substrate for Gas Sensor Application. Proceedings (mdpi), 2017, 1, 622.	0.2	2
25	Introduction to Eurosensors 2017, Paris, 3–6 September 2017. Proceedings (mdpi), 2017, 1, .	0.2	Ο
26	Electrochemical Removal of NOx on Ceria-Based Catalyst-Electrodes. Catalysts, 2017, 7, 61.	3.5	7
27	NO 2 -Selective Electrochemical Sensors for Diesel Exhausts. Procedia Engineering, 2016, 168, 7-10.	1.2	8
28	Influence of Electrodes Polarization on the Response of Resistive Soot Sensor. Procedia Engineering, 2016, 168, 31-34.	1.2	7
29	Selective Ammonia Gas Sensor based on SnO 2 -APTES Modification. Procedia Engineering, 2016, 168, 280-283.	1.2	4
30	Tubular gas preconcentrators based on inkjet printed micro-hotplates on foil. Sensors and Actuators B: Chemical, 2016, 236, 1111-1117.	7.8	21
31	Influence of key parameters on the response of a resistive soot sensor. Sensors and Actuators B: Chemical, 2016, 236, 1036-1043.	7.8	19
32	Fully inkjet printed SnO2 gas sensor on plastic substrate. Sensors and Actuators B: Chemical, 2016, 236, 1091-1097.	7.8	103
33	Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells. Applied Surface Science, 2016, 374, 370-374.	6.1	2
34	Development of a Particulate Matter Sensor for Diesel Engine. Procedia Engineering, 2015, 120, 1237-1240.	1.2	9
35	Inkjet Printed SnO 2 Gas Sensor on Plastic Substrate. Procedia Engineering, 2015, 120, 75-78.	1.2	16
36	Preconcentration Modeling for the Optimization of a Micro Gas Preconcentrator Applied to Environmental Monitoring. Analytical Chemistry, 2015, 87, 4455-4463.	6.5	20

#	Article	IF	CITATIONS
37	Application of advanced morphology Au–X (X=YSZ, ZrO2) composites as sensing electrode for solid state mixed-potential exhaust NOx sensor. Sensors and Actuators B: Chemical, 2015, 207, 391-397.	7.8	43
38	Tunable architecture for flexible and highly conductive graphene–polymer composites. Composites Science and Technology, 2014, 95, 82-88.	7.8	46
39	Electrical and mechanical percolation in graphene-latex nanocomposites. Polymer, 2014, 55, 5140-5145.	3.8	40
40	Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine. Journal of Power Sources, 2014, 268, 356-364.	7.8	4
41	Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3â^ΖCe0.9Gd0.1O1.95 composite cathode. International Journal of Hydrogen Energy, 2014, 39, 1014-1022.	7.1	19
42	Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere. Journal of Materials Science, 2013, 48, 7184-7195.	3.7	4
43	SOFC Long Term Operation in Pure Methane by Gradual Internal Reforming. ECS Transactions, 2013, 57, 3023-3030.	0.5	4
44	In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells. Journal of Power Sources, 2013, 242, 811-816.	7.8	8
45	Study of oxygen reduction mechanism on Ag modified Sm1.8Ce0.2CuO4 cathode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38, 14060-14066.	7.1	16
46	An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs. Energy and Environmental Science, 2013, 6, 2119.	30.8	43
47	Voltage Oscillations in Singleâ€Chamber Fuel Cells Operating under a C ₃ H ₈ /O ₂ Mixture. Fuel Cells, 2013, 13, 1032-1039.	2.4	2
48	Gas Sensors Based on Tin Dioxide for Exhaust Gas Application, Modeling of Response for Pure Gases and for Mixtures. Procedia Engineering, 2012, 47, 655-658.	1.2	4
49	Electrochemical Promotion of Propane Combustion on Highly Dispersed Pt Nanoparticles. ECS Transactions, 2012, 45, 535-541.	0.5	0
50	Electrochemical promotion of catalysis with highly dispersed Pt nanoparticles. Electrochemistry Communications, 2012, 19, 5-8.	4.7	33
51	Development of a YSZ based Oxygen and Hydrocarbon sensors for combustion control unit. Procedia Engineering, 2011, 25, 1089-1092.	1.2	4
52	Study on Sm1.8Ce0.2CuO4–Ce0.9Gd0.1O1.95 composite cathode materials for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2011, 36, 12555-12560.	7.1	23
53	Synthesis and performance of Sr1.5LaxMnO4 as cathode materials for intermediate temperature solid oxide fuel cell. Journal of Power Sources, 2011, 196, 5835-5839.	7.8	19
54	Improvement of the NO selectivity for a planar YSZ sensor. Sensors and Actuators B: Chemical, 2011, 154, 106-110.	7.8	26

#	Article	IF	CITATIONS
55	CO detection in H2 reducing atmosphere with mini fuel cell. Sensors and Actuators B: Chemical, 2011, 156, 283-289.	7.8	6
56	Tests for the Use of La2Mo2O9-based Oxides as Multipurpose SOFC Core Materials. Fuel Cells, 2010, 10, 433-439.	2.4	27
57	Development of Single Chamber Solid Oxide Fuel Cells (SCFC). Fuel Cells, 2010, 10, 683-692.	2.4	15
58	Optimization of operating conditions of a mini fuel cell for the detection of low or high levels of CO in the reformate gas. Procedia Engineering, 2010, 5, 135-138.	1.2	0
59	Nickel-Based Anodes for Single-Chamber Solid Oxide Fuel Cells: A Catalytic Study. Journal of the Electrochemical Society, 2010, 157, B1180.	2.9	5
60	Exhaust Gas Sensor Based On Tin Dioxide For Automotive Application. , 2009, , .		0
61	Detection of CO in H2-rich gases with a samarium doped ceria (SDC) sensor for fuel cell applications. Sensors and Actuators B: Chemical, 2009, 141, 7-12.	7.8	19
62	Detection of oxygen traces in nitrogen- and hydrogen-rich atmosphere. Sensors and Actuators B: Chemical, 2009, 139, 298-303.	7.8	7
63	Improvement of the NOx selectivity for a planar YSZ sensor. Procedia Chemistry, 2009, 1, 589-592.	0.7	3
64	Comparison of the performances of �-Alumina and YSZ potentiometric gas sensors for exhaust automotive application. , 2007, , .		1
65	Metal/SnO <inf>2</inf> interface effects on CO sensing; operando studies. , 2007, , .		Ο
66	Application of carbon nano-powders for a gas micro-preconcentrator. Sensors and Actuators B: Chemical, 2007, 127, 179-185.	7.8	39
67	Development and characterisation of a screen-printed mixed potential gas sensor. Sensors and Actuators B: Chemical, 2007, 130, 561-561.	7.8	9
68	Selectivity improvement of semi-conducting gas sensors by selective filter for atmospheric pollutants detection. Materials Science and Engineering C, 2006, 26, 186-195.	7.3	59
69	Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development. Sensors and Actuators B: Chemical, 2006, 118, 263-268.	7.8	15
70	Optimization of SnO2 screen-printing inks for gas sensor applications. Journal of the European Ceramic Society, 2005, 25, 2137-2140.	5.7	26
71	Development of a planar SOFC device using screen-printing technology. Journal of the European Ceramic Society, 2005, 25, 2633-2636.	5.7	72
72	Application of membranes and filtering films for gas sensors improvements. Thin Solid Films, 2005, 490, 7-16.	1.8	52

#	Article	IF	CITATIONS
73	Model of the thickness effect of SnO2 thick film on the detection properties. Sensors and Actuators B: Chemical, 2004, 103, 84-90.	7.8	29
74	Development of tin oxide material by screen-printing technology for micro-machined gas sensors. Sensors and Actuators B: Chemical, 2003, 93, 531-537.	7.8	30
75	Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors. Sensors and Actuators B: Chemical, 2003, 95, 83-89.	7.8	77
76	The influence of the electrode size on the electrical response of a potentiometric gas sensor to the action of oxygen. IEEE Sensors Journal, 2002, 2, 349-353.	4.7	7
77	Development of a protected gas sensor for exhaust automotive applications. IEEE Sensors Journal, 2002, 2, 342-348.	4.7	22
78	The influence of a platinum membrane on the sensing properties of a tin dioxide thin film. Sensors and Actuators B: Chemical, 2002, 84, 148-159.	7.8	33
79	Development of a gas sensor by thick film technology for automotive applications: choice of materials—realization of a prototype. Materials Science and Engineering C, 2002, 21, 97-103.	7.3	29
80	Effect of a platinum membrane on the sensing properties of materials based on thin and thick tin dioxide films. Materials Science and Engineering C, 2002, 21, 113-123.	7.3	8
81	Oxidation behaviour of a multi-layered ceramic-matrix composite (SiC)f/C/(SiBC)m. Composites Science and Technology, 2001, 61, 607-614.	7.8	78
82	Oxidation Behaviour of a SiC Based Fiber. Key Engineering Materials, 1997, 127-131, 203-210.	0.4	5
83	Nucleation and growth of ceria from cerium III hydroxycarbonate. Studies in Surface Science and Catalysis, 1995, 91, 885-892.	1.5	11
84	Transformation of cerium(III) hydroxycarbonate into ceria. Part 2.—Experimental study of the growth rate. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4437-4440.	1.7	6
85	Transformation of cerium(III) hydroxycarbonate into ceria. Part 1.—Nucleation and growth rates of ceria. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4431-4435.	1.7	17