Robinson Manfro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886009/publications.pdf

Version: 2024-02-01

623734 888059 18 736 14 17 citations g-index h-index papers 18 18 18 950 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrogen production from steam reforming of acetic acid over Pt–Ni bimetallic catalysts supported on ZrO2. Biomass and Bioenergy, 2022, 156, 106317.	5.7	10
2	Effect of niobia addition on cobalt catalysts supported on alumina for glycerol steam reforming. Renewable Energy, 2020, 148, 864-875.	8.9	23
3	Cu catalysts supported on CaO/MgO for glycerol conversion to lactic acid in alkaline medium employing a continuous flow reaction system. RSC Advances, 2020, 10, 31123-31138.	3.6	16
4	Production of Hydrogen by Steam Reforming of Ethanol over Pd-Promoted Ni/SiO2 Catalyst. Catalysis Letters, 2020, 150, 3424-3436.	2.6	20
5	Hydrogenolysis of glycerol to 1,2-propanediol without external H2 addition in alkaline medium using Ni-Cu catalysts supported on Y zeolite. Renewable Energy, 2020, 160, 919-930.	8.9	35
6	Effect of CaO Addition on Nickel Catalysts Supported on Alumina for Glycerol Steam Reforming. Catalysis Letters, 2019, 149, 1991-2003.	2.6	14
7	Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system. Renewable Energy, 2018, 118, 160-171.	8.9	30
8	Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B: Environmental, 2018, 220, 31-41.	20.2	100
9	Hydrogen production from glycerol steam reforming over nickel catalysts supported on alumina and niobia: Deactivation process, effect of reaction conditions and kinetic modeling. International Journal of Hydrogen Energy, 2018, 43, 15064-15082.	7.1	38
10	Perovskite-based catalysts for tar removal by steam reforming: Effect of the presence of hydrogen sulfide. International Journal of Hydrogen Energy, 2017, 42, 9873-9880.	7.1	34
11	Continuous production of lactic acid from glycerol in alkaline medium using supported copper catalysts. Fuel Processing Technology, 2016, 144, 170-180.	7.2	52
12	Combined DFT and experimental study of the dispersion and interaction of copper species in Ni-CeO ₂ nanosized solid solutions. RSC Advances, 2016, 6, 5057-5067.	3.6	4
13	Copper as promoter of the NiO–CeO 2 catalyst in the preferential CO oxidation. Applied Catalysis B: Environmental, 2016, 182, 257-265.	20.2	91
14	Production of Renewable Hydrogen by Glycerol Steam Reforming Using Ni–Cu–Mg–Al Mixed Oxides Obtained from Hydrotalcite-like Compounds. Catalysis Letters, 2014, 144, 867-877.	2.6	19
15	Production of Renewable Hydrogen by Aqueous-Phase Reforming of Glycerol Over Ni-Cu Catalysts Derived from Hydrotalcite Precursors. , 2014, , 413-426.		1
16	Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni–Cu catalysts derived from hydrotalcite precursors. Renewable Energy, 2013, 50, 408-414.	8.9	73
17	Aqueous-phase reforming of glycerol using Ni–Cu catalysts prepared from hydrotalcite-like precursors. Catalysis Science and Technology, 2013, 3, 1278.	4.1	62
18	Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2. Fuel Processing Technology, 2011, 92, 330-335.	7.2	114