Joël Gaubicher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Theoretical Study of the Effect of Functionalized Pyrene Polymerization on Carbon Electrode Surfaces for Electrochemical Storage. Batteries and Supercaps, 2021, 4, 1018-1031.	4.7	0
2	Aluminum current collector for high voltage Li-ion battery. Part I: A benchmark study with statistical analysis. Electrochemistry Communications, 2021, 126, 107013.	4.7	5
3	Dual Electroactivity in a Covalent Organic Network with Mechanically Interlocked Pillar[5]arenes. Chemistry - A European Journal, 2021, 27, 9589-9596.	3.3	7
4	Aluminum current collector for high voltage Li-ion battery. Part II: Benefit of the En' Safe® primed current collector technology. Electrochemistry Communications, 2021, 126, 107008.	4.7	4
5	Electrochemical Assessment of Indigo Carmine Dye in Lithium Metal Polymer Technology. Molecules, 2021, 26, 3079.	3.8	11
6	Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chemical Reviews, 2020, 120, 6490-6557.	47.7	517
7	Full Organic Aqueous Battery Based on TEMPO Small Molecule with Millimeter-Thick Electrodes. Chemistry of Materials, 2019, 31, 1869-1880.	6.7	42
8	Intermixed Cation–Anion Aqueous Battery Based on an Extremely Fast and Long ycling Diâ€Block Bipyridinium–Naphthalene Diimide Oligomer. Advanced Energy Materials, 2019, 9, 1803688.	19.5	22
9	Cascadeâ€Type Prelithiation Approach for Liâ€Ion Capacitors. Advanced Energy Materials, 2019, 9, 1900078.	19.5	37
10	Progress in all-organic rechargeable batteries using cationic and anionic configurations: Toward low-cost and greener storage solutions?. Current Opinion in Electrochemistry, 2018, 9, 70-80.	4.8	113
11	Peculiar Li-storage mechanism at graphene edges in turbostratic carbon black and their application in high energy Li-ion capacitor. Journal of Power Sources, 2018, 378, 628-635.	7.8	13
12	Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1701988.	19.5	41
13	Aqueous Batteries: Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries (Adv. Energy Mater. 8/2018). Advanced Energy Materials, 2018, 8, 1870036.	19.5	1
14	Improved electro-grafting of nitropyrene onto onion-like carbon via in situ electrochemical reduction and polymerization: tailoring redox energy density of the supercapacitor positive electrode. Journal of Materials Chemistry A, 2017, 5, 1488-1494.	10.3	21
15	Lithium nâ€Đoped Polyaniline as a Highâ€Performance Electroactive Material for Rechargeable Batteries. Angewandte Chemie, 2017, 129, 1575-1578.	2.0	23
16	Lithium nâ€Doped Polyaniline as a Highâ€Performance Electroactive Material for Rechargeable Batteries. Angewandte Chemie - International Edition, 2017, 56, 1553-1556.	13.8	99
17	Interest of molecular functionalization for electrochemical storage. Nano Research, 2017, 10, 4175-4200.	10.4	11
18	Fabrication and performance of electrochemically grafted thiophene silicon nanoparticle anodes for Li-ion batteries. Journal of Power Sources, 2016, 324, 97-105.	7.8	6

JoëL GAUBICHER

#	Article	IF	CITATIONS
19	Mechanism of Silicon Electrode Aging upon Cycling in Full Lithiumâ€Ion Batteries. ChemSusChem, 2016, 9, 841-848.	6.8	67
20	Engineered Electronic Contacts for Composite Electrodes in Li Batteries Using Thiophene-Based Molecular Junctions. Chemistry of Materials, 2015, 27, 4057-4065.	6.7	11
21	Perspectives in Lithium Batteries. , 2015, , 191-232.		3
22	A rechargeable lithium/quinone battery using a commercial polymer electrolyte. Electrochemistry Communications, 2015, 55, 22-25.	4.7	33
23	Effect of the Porous Texture of Activated Carbons on the Electrochemical Properties of Molecule-Grafted Carbon Products in Organic Media. Journal of the Electrochemical Society, 2015, 162, A2289-A2295.	2.9	6
24	Elucidation of the Na _{2/3} FePO ₄ and Li _{2/3} FePO ₄ Intermediate Superstructure Revealing a Pseudouniform Ordering in 2D. Journal of the American Chemical Society, 2014, 136, 9144-9157.	13.7	67
25	Redirected charge transport arising from diazonium grafting of carbon coated LiFePO ₄ . Physical Chemistry Chemical Physics, 2014, 16, 22745-22753.	2.8	11
26	Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules. Journal of Materials Chemistry A, 2014, 2, 8599-8602.	10.3	29
27	Synergistic Effect in Carbon Coated LiFePO ₄ for High Yield Spontaneous Grafting of Diazonium Salt. Structural Examination at the Grain Agglomerate Scale. Journal of the American Chemical Society, 2013, 135, 11614-11622.	13.7	25
28	Structural changes of a Li/S rechargeable cell in Lithium Metal Polymer technology. Journal of Power Sources, 2013, 241, 249-254.	7.8	25
29	Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions. Electrochimica Acta, 2013, 88, 680-687.	5.2	24
30	Chemical functionalization of activated carbon through radical and diradical intermediates. Electrochemistry Communications, 2013, 34, 14-17.	4.7	14
31	Direct introduction of redox centers at activated carbon substrate based on acid-substituent-assisted diazotization. Electrochemistry Communications, 2012, 25, 124-127.	4.7	17
32	In situ redox functionalization of composite electrodes for high power–high energy electrochemical storage systems via a non-covalent approach. Energy and Environmental Science, 2012, 5, 5379-5386.	30.8	37
33	Modification of activated carbons based on diazonium ions in situ produced from aminobenzene organic acid without addition of other acid. Journal of Materials Chemistry, 2011, 21, 12221.	6.7	26
34	Capacity fading on cycling nano size grains of Li1.1V3O8, electrochemical investigation. Electrochimica Acta, 2010, 55, 3979-3986.	5.2	18
35	Operando discrimination of fast and slow active grains within a cycling electrode for lithium battery. Electrochemistry Communications, 2010, 12, 561-564.	4.7	3
36	Ultrafast synthesis of Li1+αV3O8 gel precursors for lithium battery applications. Solid State Ionics, 2009, 180, 1511-1516.	2.7	9

JoëL GAUBICHER

#	Article	IF	CITATIONS
37	Lowering interfacial chemical reactivity of oxide materials for lithium batteries. A molecular grafting approach. Journal of Materials Chemistry, 2009, 19, 4771.	6.7	25
38	Synthesis of Li1+αV3O8via a Gel Precursor: Part II, from Xerogel to the Anhydrous Material. Chemistry of Materials, 2006, 18, 629-636.	6.7	19
39	Sol Gel Synthesis of Li1+αV3O8. 1. From Precursors to Xerogel. Chemistry of Materials, 2005, 17, 2276-2283.	6.7	37
40	7Li and51V MAS NMR Study of the Electrochemical Behavior of Li1+xV3O8. Chemistry of Materials, 2004, 16, 2725-2733.	6.7	31
41	Li1+αV3O8Gel and Xerogel: a New Insight. Chemistry of Materials, 2004, 16, 4867-4869.	6.7	10
42	Crystal structure of a new vanadium(IV) diphosphate: VP2O7, prepared by lithium extraction from LiVP2O7. Solid State Sciences, 2001, 3, 881-887.	0.7	29
43	Crystal structure of the end product of electrochemical lithium intercalation in V2(SO4)3. Journal of Materials Chemistry, 1999, 9, 2809-2812.	6.7	7
44	Powder diffraction data for fluorocomplexes of niobium IV: MNbF6 (M=Ca, Mg, Cd, Zn). Powder Diffraction, 1998, 13, 163-165.	0.2	3