
Zhengyuan Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5885068/publications.pdf Version: 2024-02-01

ΖΗΕΝΟΥΠΑΝ ΤΗ

#	Article	IF	CITATIONS
1	Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 2014, 13, 961-969.	13.3	1,382
2	Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 2016, 1, .	19.8	1,339
3	Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 2018, 560, 345-349.	13.7	586
4	Metal–Sulfur Battery Cathodes Based on PAN–Sulfur Composites. Journal of the American Chemical Society, 2015, 137, 12143-12152.	6.6	488
5	A stable room-temperature sodium–sulfur battery. Nature Communications, 2016, 7, 11722.	5.8	459
6	Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nature Energy, 2018, 3, 310-316.	19.8	413
7	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
8	Designing solid-liquid interphases for sodium batteries. Nature Communications, 2017, 8, 898.	5.8	303
9	Ionicâ€Liquid–Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2014, 53, 488-492.	7.2	295
10	25th Anniversary Article: Polymer–Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage. Advanced Materials, 2014, 26, 201-234.	11.1	244
11	Nanoporous Polymer eramic Composite Electrolytes for Lithium Metal Batteries. Advanced Energy Materials, 2014, 4, 1300654.	10.2	222
12	Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 2017, 29, 1605512.	11.1	214
13	Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, 1, 394-406.	11.7	202
14	Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries. Accounts of Chemical Research, 2015, 48, 2947-2956.	7.6	195
15	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 992-996.	7.2	178
16	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155
17	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie - International Edition, 2017, 56, 13070-13077.	7.2	151
18	Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Accounts of Chemical Research, 2018, 51, 80-88.	7.6	145

ZHENGYUAN TU

#	Article	IF	CITATIONS
19	Nanoporous Hybrid Electrolytes for Highâ€Energy Batteries Based on Reactive Metal Anodes. Advanced Energy Materials, 2017, 7, 1602367.	10.2	122
20	Stable lithium electrodeposition in salt-reinforced electrolytes. Journal of Power Sources, 2015, 279, 413-418.	4.0	106
21	Stabilizing polymer electrolytes in high-voltage lithium batteries. Nature Communications, 2019, 10, 3091.	5.8	98
22	Designer interphases for the lithium-oxygen electrochemical cell. Science Advances, 2017, 3, e1602809.	4.7	84
23	Highly Conductive, Sulfonated, UV-Cross-Linked Separators for Li–S Batteries. Chemistry of Materials, 2016, 28, 5147-5154.	3.2	82
24	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie, 2018, 130, 1004-1008.	1.6	55
25	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 2018, 30, 5655-5662.	3.2	49
26	Confining electrodeposition of metals in structured electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6620-6625.	3.3	49
27	Synthesis and Properties of Poly-Ether/Ethylene Carbonate Electrolytes with High Oxidative Stability. Chemistry of Materials, 2019, 31, 8466-8472.	3.2	43
28	A Dendriteâ€Free Lithium Metal Battery Model Based on Nanoporous Polymer/Ceramic Composite Electrolytes and Highâ€Energy Electrodes. Small, 2015, 11, 2631-2635.	5.2	42
29	Fabrication of poly(lactideâ€ <i>co</i> â€glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)â€ <i>b</i> â€poly(<scp>L</scp> â€lysine)/TGFâ€l²1 plasmid DNA complexes for cartilage restoration <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2013, 101, 3097-3108.	2.1	32
30	Nanoscale Elemental Mapping of Intact Solid–Liquid Interfaces and Reactive Materials in Energy Devices Enabled by Cryo-FIB/SEM. ACS Energy Letters, 2020, 5, 1224-1232.	8.8	22
31	Influence of the Molecular Weight of Poly(Lactide-Co-Glycolide) on the <i>In Vivo</i> Cartilage Repair by a Construct of Poly(Lactide-Co-Glycolide)/Fibrin Gel/Mesenchymal Stem Cells/Transforming Growth Factor-β1. Tissue Engineering - Part A, 2014, 20, 1-11.	1.6	17
32	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie, 2017, 129, 13250-13257.	1.6	11
33	Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs. Chemical Papers, 2011, 65, .	1.0	1
34	Electronic structures and spectroscopy of sulfonated oligo(aryl ether ketones). Computational and Theoretical Chemistry, 2012, 986, 1-5.	1.1	1
35	Sodium Batteries: Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes (Adv.) Tj ETQqI	l 1 0.7843 11.1	814 rgBT /〇 1
36	Probing the Native Structure and Chemistry of Dendrites and SEI Layers in Li-Metal Batteries by Cryo-FIB Lift-Out and Cryo-STEM. Microscopy and Microanalysis, 2018, 24, 1518-1519.	0.2	1

Zhengyuan Tu

#	Article	IF	CITATIONS
37	High-resolution Electron Imaging and Spectroscopy of Reactive Materials and Liquid-Solid Interfaces in Energy Storage Devices. Microscopy and Microanalysis, 2019, 25, 2028-2029.	0.2	1
38	Revealing the Nanoscale Structure and Chemistry of Intact Solid-Liquid Interfaces in Electrochemical Energy Storage Devices by Cryo-FIB Lift-Out and Cryo-STEM. Microscopy and Microanalysis, 2017, 23, 2004-2005.	0.2	0
39	Titelbild: Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries (Angew. Chem. 4/2018). Angewandte Chemie, 2018, 130, 863-863.	1.6	Ο