List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/58850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic and optical properties of GaMnN magnetic semiconductor. Applied Physics Letters, 2001, 78, 1276-1278.	3.3	183
2	Method of preparation and structural properties of transparent YAG nanoceramics. Optical Materials, 2007, 29, 1252-1257.	3.6	97
3	Possible origin of ferromagnetism in (Ga,Mn)N. Journal of Applied Physics, 2003, 93, 4715-4717.	2.5	91
4	Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diamond and Related Materials, 2006, 15, 1813-1817.	3.9	65
5	Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). Journal of Alloys and Compounds, 2008, 456, 324-338.	5.5	56
6	Solvothermal synthesis of nanocrystalline zinc oxide doped with Mn2+, Ni2+, Co2+ and Cr3+ ions. Journal of Nanoparticle Research, 2009, 11, 1991-2002.	1.9	42
7	High pressure x-ray diffraction studies on nanocrystalline materials. Journal of Physics Condensed Matter, 2004, 16, S353-S377.	1.8	41
8	Nanocrystals: Breaking limitations of data analysis. Zeitschrift Für Kristallographie, 2010, 225, 588-598.	1.1	40
9	Elimination of trench defects and V-pits from InGaN/GaN structures. Applied Physics Letters, 2015, 106, .	3.3	34
10	Graded-index separate confinement heterostructure InGaN laser diodes. Applied Physics Letters, 2013, 103, .	3.3	33
11	Enhancement of optical confinement factor by InGaN waveguide in blue laser diodes grown by plasma-assisted molecular beam epitaxy. Applied Physics Express, 2015, 8, 032103.	2.4	32
12	Application of the apparent lattice parameter to determination of the core-shell structure of nanocrystals. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 580-594.	0.8	26
13	Influence of hydrogen and TMIn on indium incorporation in MOVPE growth of InGaN layers. Journal of Crystal Growth, 2014, 402, 330-336.	1.5	26
14	Effect of hydrogen during growth of quantum barriers on the properties of InGaN quantum wells. Journal of Crystal Growth, 2015, 414, 38-41.	1.5	24
15	Hydrogen diffusion in GaN:Mg and GaN:Si. Journal of Alloys and Compounds, 2018, 747, 354-358.	5.5	24
16	Probing the Structural/Electronic Diversity and Thermal Stability of Various Nanocrystalline Powders of Gallium Nitride GaN. Chemistry of Materials, 2008, 20, 6816-6828.	6.7	23
17	<i>Ab initio</i> and experimental studies of polarization and polarization related fields in nitrides and nitride structures. AlP Advances, 2017, 7, .	1.3	23
18	Mechanical properties of nanostructured 316LVM stainless steel annealed under pressure. Mechanics of Materials, 2013, 67, 25-32.	3.2	21

#	Article	IF	CITATIONS
19	Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction. Optics Express, 2021, 29, 1824.	3.4	20
20	Microwave Driven Hydrothermal Synthesis of Zinc Oxide Nanopowders. Solid State Phenomena, 2003, 94, 189-192.	0.3	19
21	Microwave – Hydrothermal Synthesis of Nanocrystalline Pr - Doped Zirconia Powders at Pressures up to 8 MPa. Solid State Phenomena, 2003, 94, 193-196.	0.3	15
22	Magnetic properties of ZnMnO nanopowders solvothermally grown at low temperature from zinc and manganese acetate. Applied Physics Letters, 2006, 89, 242102.	3.3	15
23	Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells. ACS Applied Materials & Interfaces, 2021, 13, 7476-7484.	8.0	15
24	Ultraviolet laser diodes grown on semipolar (202Â ⁻ 1) GaN substrates by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2013, 102, .	3.3	13
25	High power nitride laser diodes grown by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 2015, 425, 398-400.	1.5	13
26	Synthesis of Metal-Ceramic Nanocomposites by High-Pressure Infiltration. Solid State Phenomena, 2005, 101-102, 157-164.	0.3	12
27	DFT study on point defects migration through the pseudomorphic and lattice-matched InN/GaN interfaces. Computational Materials Science, 2021, 186, 110039.	3.0	12
28	Monolithic cyan â^' violet InGaN/GaN LED array. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600815.	1.8	11
29	The impact of point defects in n-type GaN layers on thermal decomposition of InGaN/GaN QWs. Scientific Reports, 2021, 11, 2458.	3.3	11
30	Bandgap behavior of InGaN/GaN short period superlattices grown by metalâ€organic vapor phase epitaxy. Physica Status Solidi (B): Basic Research, 2017, 254, 1600710.	1.5	10
31	X-ray diffraction studies of thermal properties of the core and surface shell of isolated and sintered SiC nanocrystals. Journal of Alloys and Compounds, 2004, 382, 138-145.	5.5	9
32	Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (202Â ⁻ 1) substrates. Applied Physics Letters, 2013, 102, .	3.3	9
33	HVPE-GaN growth on GaN-based Advanced Substrates by Smart Cutâ"¢. Journal of Crystal Growth, 2016, 456, 73-79.	1.5	9
34	Influence of the growth method on degradation of InGaN laser diodes. Applied Physics Express, 2017, 10, 091001.	2.4	9
35	Experimental and theoretical analysis of influence of barrier composition on optical properties of GaN/AlGaN multi-quantum wells: Temperature- and pressure-dependent photoluminescence studies. Journal of Alloys and Compounds, 2018, 769, 1064-1071.	5.5	9
36	Extremely long lifetime of III-nitride laser diodes grown by plasma assisted molecular beam epitaxy. Materials Science in Semiconductor Processing, 2019, 91, 387-391.	4.0	9

#	Article	IF	CITATIONS
37	Elaboration of SiC, TiC, and ZrC Nanopowders by Laser Pyrolysis: From Nanoparticles to Ceramic Nanomaterials. Glass Physics and Chemistry, 2005, 31, 510-518.	0.7	8
38	Impact of the substrate lattice constant on the emission properties of InGaN/GaN short-period superlattices grown by plasma assisted MBE. Superlattices and Microstructures, 2019, 133, 106209.	3.1	8
39	Optical properties of N-polar GaN: The possible role of nitrogen vacancy-related defects. Applied Surface Science, 2021, 566, 150734.	6.1	8
40	Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp). Solid State Phenomena, 2003, 94, 203-216.	0.3	7
41	Examination of the atomic pair distribution function (PDF) of SiC nanocrystals by in-situ high pressure diffraction. Journal of Alloys and Compounds, 2004, 382, 133-137.	5.5	7
42	Tb3+ ions in presence of ZnS:Mn2+ nanocrystals immobilized on silica: Energy transfer ZnS→Tb3+ and coordination state of Mn2+ ions. Journal of Luminescence, 2009, 129, 246-250.	3.1	7
43	Indium concentration fluctuations in InGaN/GaN quantum wells. Journal of Analytical Atomic Spectrometry, 2019, 34, 1718-1723.	3.0	7
44	Microwave-Assisted Hydrothermal Synthesis of Zinc-Aluminum Spinel ZnAl2O4. Materials, 2022, 15, 245.	2.9	7
45	Structure, Morphology and Luminescence Properties of Pr-Doped Nanocrystalline ZrO ₂ Obtained by Hydrothermal Method. Solid State Phenomena, 2003, 94, 141-144.	0.3	6
46	Suppression of extended defects propagation in a laser diodes structure grown on (20-21) GaN. Semiconductor Science and Technology, 2016, 31, 035001.	2.0	6
47	Indium Incorporation into InGaN Quantum Wells Grown on GaN Narrow Stripes. Materials, 2019, 12, 2583.	2.9	6
48	Thermal annealing effect on electrical and structural properties of Tungsten Carbide Schottky contacts on AlGaN/GaN heterostructures. Semiconductor Science and Technology, 2020, 35, 105004.	2.0	6
49	Strain relaxation in InGaN/GaN epilayers by formation of V-pit defects studied by SEM, XRD and numerical simulations. Journal of Applied Crystallography, 2021, 54, 62-71.	4.5	6
50	Modeling of the Point Defect Migration across the AlN/GaN Interfaces—Ab Initio Study. Materials, 2022, 15, 478.	2.9	6
51	SiC – Zn Nanocomposites Obtained Using the High – Pressure Infiltration Technique. Solid State Phenomena, 2006, 114, 257-264.	0.3	5
52	Neutron diffraction studies of the atomic thermal vibrations in complex materials: application of the Wilson method to examination of micro- and nano-crystalline SiC. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, .	0.8	5
53	XPS method as a useful tool for studies of quantum well epitaxial materials: Chemical composition and thermal stability of InGaN/GaN multilayers. Journal of Alloys and Compounds, 2014, 597, 181-187.	5.5	5
54	Electrical and structural properties of Ti/Alâ€based contacts on AlGaN/GaN heterostructures with different quality. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1091-1098.	1.8	5

#	Article	IF	CITATIONS
55	Instantaneous decay rate analysis of time resolved photoluminescence (TRPL): Application to nitrides and nitride structures. Journal of Alloys and Compounds, 2020, 823, 153791.	5.5	5
56	Stacking faults in plastically relaxed InGaN epilayers. Semiconductor Science and Technology, 2020, 35, 034003.	2.0	5
57	Looking beyond Limitations of Diffraction Methods of Structural Analysis of Nanocrystalline Materials. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 75-88.	0.2	4
58	Influence of hydrogen pre-growth flow on indium incorporation into InGaN layers. Journal of Crystal Growth, 2017, 464, 123-126.	1.5	4
59	Numerical Analysis of the High Pressure MOVPE Upside-Down Reactor for GaN Growth. Electronics (Switzerland), 2021, 10, 1503.	3.1	4
60	Synthesis of Metal-Ceramic Nanocomposites by High-Pressure Infiltration. Solid State Phenomena, 0, , 157-164.	0.3	4
61	Powder Precursors for Nanoceramics: Cleaning and Compaction. Solid State Phenomena, 2004, 99-100, 209-212.	0.3	3
62	Nitride-based laser diodes and superluminescent diodes. Photonics Letters of Poland, 2014, 6, .	0.4	3
63	Properties of InGaN/GaN multiquantum wells grown on semipolar (20-21) substrates with different miscuts. Journal of Crystal Growth, 2015, 423, 28-33.	1.5	2
64	Influence of Showerhead–Sample Distance (GAP) in MOVPE Close Coupled Showerhead Reactor on GaN Growth. Materials, 2019, 12, 3375.	2.9	2
65	Improving thermal stability of InGaN quantum wells by doping of GaN barrier layers. Journal of Alloys and Compounds, 2022, 900, 163519.	5.5	2
66	Investigation of the Microstructure of SiC-Zn Nanocomposites by Microscopic Methods: SEM, AFM and TEM. Solid State Phenomena, 2005, 101-102, 151-156.	0.3	1
67	Fabrication and Physical Properties of SiC-GaAs Nano-Composites. Solid State Phenomena, 2006, 114, 297-302.	0.3	1
68	Semipolar (202Â⁻1) GaN laser diodes operating at 388 nm grown by plasma-assisted molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 02C115.	1.2	1
69	Influence of GaN substrate crystallographic quality on the intensity of AlGaN epitaxial layer Xâ€ray diffraction peaks. Crystal Research and Technology, 2015, 50, 759-763.	1.3	1
70	Material Issues in GaN-based Laser Diode Manufacturing. , 2019, , .		1
71	SiC – Zn Nanocomposites Obtained Using the High – Pressure Infiltration Technique. Solid State Phenomena, 0, , 257-264.	0.3	1
72	Luminescence Properties of Nano Zinc Oxide Doped with Al(III) Ions Obtained in Microwave-Assisted Hydrothermal Synthesis. Materials, 2022, 15, 1403.	2.9	1

#	Article	IF	CITATIONS
73	Microwave-Driven Hydrothermal Synthesis of Oxide Nanopowders for Applications in Optoelectronics. , 2005, , 163-179.		Ο
74	HVPE-GaN growth on GaN-based advanced substrates by Smart CutTM. , 2016, , .		0