
Ingo H Greger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5884905/publications.pdf

Version: 2024-02-01

INCO H CDECED

#	Article	IF	CITATIONS
1	Mechanisms underlying TARP modulation of the GluA1/2-Î ³ 8 AMPA receptor. Nature Communications, 2022, 13, 734.	5.8	15
2	Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature, 2021, 594, 454-458.	13.7	43
3	AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARP γ8 interactions. Nature Communications, 2021, 12, 5083.	5.8	16
4	Allosteric coupling of sub-millisecond clamshell motions in ionotropic glutamate receptor ligand-binding domains. Communications Biology, 2021, 4, 1056.	2.0	2
5	Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology, 2021, 197, 108709.	2.0	12
6	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	7.1	237
7	Characterizing the binding and function of TARP Î ³ 8-selective AMPA receptor modulators. Journal of Biological Chemistry, 2020, 295, 14565-14577.	1.6	19
8	An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain. Journal of Neuroscience Methods, 2020, 342, 108824.	1.3	10
9	Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding Site in the GluA3 AMPA Receptor N-Terminal Domain. Structure, 2019, 27, 241-252.e3.	1.6	16
10	Structural biology of glutamate receptor ion channels: towards an understanding of mechanism. Current Opinion in Structural Biology, 2019, 57, 185-195.	2.6	44
11	Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP γ8. Science, 2019, 364, .	6.0	78
12	Mechanisms of postsynaptic localization of AMPA-type glutamate receptors and their regulation during long-term potentiation. Science Signaling, 2019, 12, .	1.6	63
13	Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Neuroscience Letters, 2019, 700, 22-29.	1.0	11
14	Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron, 2017, 94, 713-730.	3.8	279
15	A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Human Molecular Genetics, 2017, 26, 3869-3882.	1.4	35
16	Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain. ELife, 2017, 6, .	2.8	81
17	The dynamic AMPA receptor extracellular region: a platform for synaptic protein interactions. Journal of Physiology, 2016, 594, 5449-5458.	1.3	37
18	Structural basis for integration of GluD receptors within synaptic organizer complexes. Science, 2016, 353, 295-299.	6.0	128

INGO H GREGER

#	Article	IF	CITATIONS
19	IVA cloning: A single-tube universal cloning system exploiting bacterial In Vivo Assembly. Scientific Reports, 2016, 6, 27459.	1.6	180
20	Structure and organization of heteromeric AMPA-type glutamate receptors. Science, 2016, 352, aad3873.	6.0	105
21	Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Biophysical Journal, 2015, 109, 1136-1148.	0.2	27
22	Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nature Genetics, 2015, 47, 717-726.	9.4	310
23	Cooperative Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific Differences. Structure, 2015, 23, 1692-1704.	1.6	73
24	Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating. Cell Reports, 2014, 9, 728-740.	2.9	63
25	Molecular Dissection of the Interaction between the AMPA Receptor and Cornichon Homolog-3. Journal of Neuroscience, 2014, 34, 12104-12120.	1.7	30
26	Steric antisense inhibition of AMPA receptor Q/R editing reveals tight coupling to intronic editing sites and splicing. Nucleic Acids Research, 2013, 41, 1113-1123.	6.5	29
27	Activity-regulated RNA editing in select neuronal subfields in hippocampus. Nucleic Acids Research, 2013, 41, 1124-1134.	6.5	73
28	Receptor Heteromeric Assembly—How It Works and Why It Matters. Progress in Molecular Biology and Translational Science, 2013, 117, 361-386.	0.9	35
29	Comparative Dynamics of NMDA- and AMPA-Glutamate Receptor N-Terminal Domains. Structure, 2012, 20, 1838-1849.	1.6	34
30	Activity-Mediated AMPA Receptor Remodeling, Driven by Alternative Splicing in the Ligand-Binding Domain. Neuron, 2012, 76, 503-510.	3.8	51
31	AMPA Receptor Assembly: Atomic Determinants and Built-In Modulators. Advances in Experimental Medicine and Biology, 2012, 970, 241-264.	0.8	25
32	Differences in AMPA and Kainate Receptor Interactomes Facilitate Identification of AMPA Receptor Auxiliary Subunit GSG1L. Cell Reports, 2012, 1, 590-598.	2.9	169
33	Intrinsic Motions in the N-Terminal Domain of an Ionotropic Glutamate Receptor Detected by Fluorescence Correlation Spectroscopy. Journal of Molecular Biology, 2011, 414, 96-105.	2.0	17
34	Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO Journal, 2011, 30, 959-971.	3.5	99
35	Dynamics and allosteric potential of the AMPA receptor N-terminal domain. EMBO Journal, 2011, 30, 972-982.	3.5	53
36	Sculpting AMPA receptor formation and function by alternative RNA processing. RNA Biology, 2009, 6, 517-521.	1.5	26

INGO H GREGER

#	Article	IF	CITATIONS
37	Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum. EMBO Journal, 2008, 27, 3056-3068.	3.5	94
38	Molecular determinants of AMPA receptor subunit assembly. Trends in Neurosciences, 2007, 30, 407-416.	4.2	169
39	AMPA receptor biogenesis and trafficking. Current Opinion in Neurobiology, 2007, 17, 289-297.	2.0	130
40	Developmentally Regulated, Combinatorial RNA Processing Modulates AMPA Receptor Biogenesis. Neuron, 2006, 51, 85-97.	3.8	99
41	AMPA Receptor Tetramerization Is Mediated by Q/R Editing. Neuron, 2003, 40, 763-774.	3.8	286
42	RNA Editing at Arg607 Controls AMPA Receptor Exit from the Endoplasmic Reticulum. Neuron, 2002, 34, 759-772.	3.8	315
43	Druggability Simulations and X-ray Crystallography Reveal a Ligand-binding Site in the GluA3 AMPA Recentor N-terminal Domain, SSRN Electronic Journal, O	0.4	О