List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588486/publications.pdf Version: 2024-02-01

		10351	13338
160	18,557	72	130
papers	citations	h-index	g-index
171	171	171	7620
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 2012, 338, 1183-1189.	6.0	1,246
2	Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 2018, 558, 219-222.	13.7	759
3	Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica. Science, 2014, 344, 735-738.	6.0	651
4	Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology, 2010, 56, 415-430.	1.1	511
5	Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage. Science, 2008, 320, 778-781.	6.0	497
6	Ice-Sheet and Sea-Level Changes. Science, 2005, 310, 456-460.	6.0	463
7	An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116, 101-117.	4.9	447
8	Large fluctuations in speed on Greenland's Jakobshavn Isbr $ ilde{A}^+_l$ glacier. Nature, 2004, 432, 608-610.	13.7	434
9	Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geoscience, 2009, 2, 110-114.	5.4	427
10	Rapid Changes in Ice Discharge from Greenland Outlet Glaciers. Science, 2007, 315, 1559-1561.	6.0	420
11	Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. Science, 2008, 320, 781-783.	6.0	383
12	Widespread Complex Flow in the Interior of the Antarctic Ice Sheet. Science, 2000, 287, 1248-1250.	6.0	314
13	21st-Century Evolution of Greenland Outlet Glacier Velocities. Science, 2012, 336, 576-578.	6.0	295
14	An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). Journal of Glaciology, 2009, 55, 573-595.	1.1	291
15	Stability of the West Antarctic ice sheet in a warming world. Nature Geoscience, 2011, 4, 506-513.	5.4	261
16	Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. Journal of Geophysical Research, 2008, 113, .	3.3	250
17	Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	246
18	Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature, 2013, 497, 235-238.	13.7	242

#	Article	IF	CITATIONS
19	Tributaries of West Antarctic Ice Streams Revealed by RADARSAT Interferometry. Science, 1999, 286, 283-286.	6.0	230
20	High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland. Science, 2001, 294, 2338-2342.	6.0	229
21	Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate. Journal of Glaciology, 2008, 54, 646-660.	1.1	228
22	Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 2007, 445, 904-907.	13.7	224
23	Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 25-37.	2.7	213
24	Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Annals of Glaciology, 2002, 34, 195-201.	2.8	209
25	Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology, 2014, 60, 761-770.	1.1	208
26	Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research, 2008, 113, .	3.3	202
27	Sensitivity of 21st century sea level to oceanâ€induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 2010, 37, .	1.5	199
28	Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophysical Research Letters, 2005, 32, .	1.5	198
29	Ice-Sheet Response to Oceanic Forcing. Science, 2012, 338, 1172-1176.	6.0	197
30	Distinct patterns of seasonal Greenland glacier velocity. Geophysical Research Letters, 2014, 41, 7209-7216.	1.5	190
31	Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. Journal of Glaciology, 2009, 55, 245-257.	1.1	181
32	Greenland ice sheet motion coupled with daily melting in late summer. Geophysical Research Letters, 2009, 36, .	1.5	181
33	Positive Mass Balance of the Ross Ice Streams, West Antarctica. Science, 2002, 295, 476-480.	6.0	177
34	Basal shear stress of the Ross ice streams from control method inversions. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	173
35	Changes in west Antarctic ice stream velocities: Observation and analysis. Journal of Geophysical Research, 2002, 107, EPM 3-1-EPM 3-22.	3.3	169
36	Iceâ€front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research, 2008, 113, .	3.3	147

#	Article	IF	CITATIONS
37	Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. Earth and Planetary Science Letters, 2011, 302, 423-428.	1.8	147
38	A Mini-Surge on the Ryder Glacier, Greenland, Observed by Satellite Radar Interferometry. Science, 1996, 274, 228-230.	6.0	146
39	Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere, 2012, 6, 273-286.	1.5	136
40	Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and modelâ€based analysis. Journal of Geophysical Research, 2012, 117, .	3.3	134
41	Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophysical Research Letters, 2008, 35, .	1.5	129
42	Timing of Recent Accelerations of Pine Island Glacier, Antarctica. Geophysical Research Letters, 2003, 30, .	1.5	127
43	Challenges to Understanding the Dynamic Response of Greenland's Marine Terminating Glaciers to Oceanic and Atmospheric Forcing. Bulletin of the American Meteorological Society, 2013, 94, 1131-1144.	1.7	126
44	Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland. Journal of Glaciology, 1996, 42, 564-575.	1.1	126
45	Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt–induced changes in subglacial hydrology. Journal of Geophysical Research, 2011, 116, .	3.3	125
46	Melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophysical Research Letters, 2003, 30, .	1.5	123
47	Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. Journal of Geophysical Research F: Earth Surface, 2015, 120, 818-833.	1.0	121
48	Brief Communication: Further summer speedup of Jakobshavn Isbræ. Cryosphere, 2014, 8, 209-214.	1.5	120
49	Airborneâ€radar and iceâ€core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophysical Research Letters, 2013, 40, 3649-3654.	1.5	119
50	Numerical modeling of oceanâ€ice interactions under Pine Island Bay's ice shelf. Journal of Geophysical Research, 2007, 112, .	3.3	117
51	Mass balance of Greenland's three largest outlet glaciers, 2000-2010. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	116
52	A complete map of Greenland ice velocity derived from satellite data collected over 20 years. Journal of Glaciology, 2018, 64, 1-11.	1.1	114
53	Pine Island glacier ice shelf melt distributed at kilometre scales. Cryosphere, 2013, 7, 1543-1555.	1.5	107
54	Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature, 2015, 522, 73-76.	13.7	106

#	Article	IF	CITATIONS
55	Constraints on the lake volume required for hydroâ€fracture through ice sheets. Geophysical Research Letters, 2009, 36, .	1.5	105
56	Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. Journal of Glaciology, 2012, 58, 1151-1164.	1.1	105
57	Measurement of ice-sheet topography using satellite-radar interferometry. Journal of Glaciology, 1996, 42, 10-22.	1.1	104
58	Observations of ice-sheet motion in Greenland using satellite radar interferometry. Geophysical Research Letters, 1995, 22, 571-574.	1.5	97
59	Subglacial sediments: A regional geological template for ice flow in West Antarctica. Geophysical Research Letters, 2001, 28, 3493-3496.	1.5	96
60	Continued deceleration of Whillans Ice Stream, West Antarctica. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	93
61	Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 2011, 5, 701-714.	1.5	93
62	Regularized Coulomb Friction Laws for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica. Geophysical Research Letters, 2019, 46, 4764-4771.	1.5	93
63	Observation and analysis of ice flow in the largest Greenland ice stream. Journal of Geophysical Research, 2001, 106, 34021-34034.	3.3	92
64	Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere, 2014, 8, 1375-1392.	1.5	90
65	Melting and freezing beneath the Ross ice streams, Antarctica. Journal of Glaciology, 2004, 50, 96-108.	1.1	89
66	Limits to future expansion of surfaceâ€meltâ€enhanced ice flow into the interior of western Greenland. Geophysical Research Letters, 2015, 42, 1800-1807.	1.5	89
67	A Simple Law for Ice-Shelf Calving. Science, 2008, 322, 1344-1344.	6.0	88
68	Tides of the Ross Sea and Ross Ice Shelf cavity. Antarctic Science, 2003, 15, 31-40.	0.5	87
69	Rapid response of modern day ice sheets to external forcing. Earth and Planetary Science Letters, 2007, 257, 1-13.	1.8	86
70	Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). Journal of Geophysical Research, 2011, 116, .	3.3	82
71	Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method. Geophysical Research Letters, 2005, 32, .	1.5	81
72	Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere, 2013, 7, 1185-1192.	1.5	80

#	Article	IF	CITATIONS
73	Subglacial conditions during and after stoppage of an Antarctic Ice Stream: Is reactivation imminent?. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	77
74	Contribution to the glaciology of northern Greenland from satellite radar interferometry. Journal of Geophysical Research, 2001, 106, 34007-34019.	3.3	74
75	Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 2015, 61, 76-88.	1.1	73
76	Measurement of ice-sheet topography using satellite-radar interferometry. Journal of Glaciology, 1996, 42, 10-22.	1.1	72
77	Glaciological advances made with interferometric synthetic aperture radar. Journal of Glaciology, 2010, 56, 1026-1042.	1.1	71
78	Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica. Cryosphere, 2017, 11, 451-467.	1.5	70
79	Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters, 2016, 43, 10,817.	1.5	69
80	Integrating satellite observations with modelling: basal shear stress of the Filcher-Ronne ice streams, Antarctica. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1795-1814.	1.6	66
81	Response of subglacial sediments to basal freeze-on 2. Application in numerical modeling of the recent stoppage of Ice Stream C, West Antarctica. Journal of Geophysical Research, 2003, 108, .	3.3	65
82	Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow. Annals of Glaciology, 2000, 31, 184-190.	2.8	64
83	Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales. Cryosphere, 2018, 12, 2211-2227.	1.5	63
84	Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. Journal of Geophysical Research, 2012, 117, .	3.3	62
85	Calving of large tabular icebergs from ice shelf rift systems. Geophysical Research Letters, 2005, 32, .	1.5	58
86	Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1635-1652.	1.0	57
87	lce velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ IsstrÃ,m, 2015–2017, from Sentinel 1-a/b SAR imagery. Cryosphere, 2018, 12, 2087-2097.	1.5	55
88	Ice Flow Direction Change in Interior West Antarctica. Science, 2004, 305, 1948-1951.	6.0	54
89	An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry. Journal of Glaciology, 2000, 46, 67-74.	1.1	53
90	Subglacial Lake Ellsworth: A candidate forin situexploration in West Antarctica. Geophysical Research Letters, 2004, 31, .	1.5	53

#	Article	IF	CITATIONS
91	East Antarctic ice stream tributary underlain by major sedimentary basin. Geology, 2006, 34, 33.	2.0	53
92	Basal melt beneath Whillans Ice Stream and Ice Streams A and C, West Antarctica. Annals of Glaciology, 2003, 36, 257-262.	2.8	49
93	Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters, 2017, 44, 4159-4167.	1.5	47
94	Bed topography and lubrication inferred from surface measurements on fast-flowing ice streams. Journal of Glaciology, 2003, 49, 481-490.	1.1	46
95	Synthesizing multiple remote-sensing techniques for subglacial hydrologic mapping: application to a lake system beneath MacAyeal Ice Stream, West Antarctica. Journal of Glaciology, 2010, 56, 187-199.	1.1	46
96	Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet. Journal of Glaciology, 2013, 59, 687-696.	1.1	46
97	Drainage of Southeast Greenland Firn Aquifer Water through Crevasses to the Bed. Frontiers in Earth Science, 2017, 5, .	0.8	46
98	Thickening of the ice stream catchments feeding the Filchner-Ronne Ice Shelf, Antarctica. Geophysical Research Letters, 2005, 32, .	1.5	45
99	The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 1. Hydrology model. Journal of Glaciology, 2011, 57, 697-709.	1.1	44
100	Basal resistance for three of the largest Greenland outlet glaciers. Journal of Geophysical Research F: Earth Surface, 2016, 121, 168-180.	1.0	44
101	Ice-shelf retreat drives recent Pine Island Glacier speedup. Science Advances, 2021, 7, .	4.7	44
102	Numerical investigations of the slow-down of Whillans Ice Stream, West Antarctica: is it shutting down like Ice Stream C?. Annals of Glaciology, 2003, 37, 239-246.	2.8	42
103	GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss. Journal of Geophysical Research, 2010, 115, .	3.3	42
104	Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry. Cryosphere, 2014, 8, 1725-1740.	1.5	42
105	Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. Cryosphere, 2015, 9, 2429-2446.	1.5	42
106	Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica. Cryosphere, 2019, 13, 2633-2656.	1.5	42
107	Weak bed control of the eastern shear margin of Thwaites Glacier, West Antarctica. Journal of Glaciology, 2013, 59, 900-912.	1.1	41
108	balance velocities of the Greenland Ice Sheet. Geophysical Research Letters, 1997, 24, 3045-3048.	1.5	39

#	Article	IF	CITATIONS
109	Modeling Ice-Sheet Flow. Science, 2012, 336, 551-552.	6.0	39
110	A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity. Cryosphere, 2020, 14, 211-227.	1.5	39
111	Understanding Glacier Flow in Changing Times. Science, 2008, 322, 1061-1062.	6.0	37
112	Grounding line variability and subglacial lake drainage on Pine Island Glacier, Antarctica. Geophysical Research Letters, 2016, 43, 9093-9102.	1.5	36
113	Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth System Science Data, 2013, 5, 277-287.	3.7	35
114	Antarctic firn compaction rates from repeat-track airborne radar data: I. Methods. Annals of Glaciology, 2015, 56, 155-166.	2.8	35
115	Ice-stream-related patterns of ice flow in the interior of northeast Greenland. Journal of Geophysical Research, 2001, 106, 34035-34045.	3.3	34
116	Distribution of basal melting and freezing beneath tributaries of Ice Stream C: implication for the Holocene decay of the West Antarctic ice sheet. Annals of Glaciology, 2003, 36, 273-282.	2.8	33
117	Spatial stability of Ice Stream D and its tributaries, West Antarctica, revealed by radio-echo sounding and interferometry. Annals of Glaciology, 2003, 37, 377-382.	2.8	32
118	lce sheet record of recent seaâ€ice behavior and polynya variability in the Amundsen Sea, West Antarctica. Journal of Geophysical Research: Oceans, 2013, 118, 118-130.	1.0	32
119	Englacial latent-heat transfer has limited influence on seaward ice flux in western Greenland. Journal of Glaciology, 2017, 63, 1-16.	1.1	32
120	RADARSAT interferometry for Antarctic grounding-zone mapping. Annals of Glaciology, 2002, 34, 269-276.	2.8	31
121	Ice flow of Humboldt, Petermann and Ryder Cletscher, northern Greenland. Journal of Glaciology, 1999, 45, 231-241.	1.1	29
122	CLIMATE CHANGE: Greenland Rumbles Louder as Glaciers Accelerate. Science, 2006, 311, 1719-1720.	6.0	29
123	Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1082-1106.	1.0	29
124	Greenland Ice Sheet flow response to runoff variability. Geophysical Research Letters, 2016, 43, 11295-11303.	1.5	29
125	Recurring dynamically induced thinning during 1985 to 2010 on Upernavik IsstrÃ,m, West Greenland. Journal of Geophysical Research F: Earth Surface, 2013, 118, 111-121.	1.0	27
126	A SAR record of early 21st century change in Greenland. Journal of Glaciology, 2016, 62, 62-71.	1.1	26

#	Article	IF	CITATIONS
127	Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 2012, 58, 1212-1226.	1.1	25
128	Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland. Journal of Geophysical Research, 2012, 117, .	3.3	23
129	Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote Sensing of Environment, 2018, 209, 166-180.	4.6	23
130	Tropical Pacific Influence on the Source and Transport of Marine Aerosols to West Antarctica*. Journal of Climate, 2014, 27, 1343-1363.	1.2	21
131	Ice flow in the northeast Greenland ice stream. Annals of Glaciology, 2000, 31, 141-146.	2.8	18
132	Marine Ice Modification of Fringing Ice Shelf Flow. Arctic, Antarctic, and Alpine Research, 2005, 37, 323-330.	0.4	18
133	A century of geometry and velocity evolution at Eqip Sermia, West Greenland. Journal of Glaciology, 2016, 62, 640-654.	1.1	18
134	Intercomparison and Validation of SAR-Based Ice Velocity Measurement Techniques within the Greenland Ice Sheet CCI Project. Remote Sensing, 2018, 10, 929.	1.8	18
135	Ice flow of Humboldt, Petermann and Ryder Gletscher, northern Greenland. Journal of Glaciology, 1999, 45, 231-241.	1.1	17
136	GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica. Cryosphere, 2017, 11, 2655-2674.	1.5	16
137	Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt. Cryosphere, 2018, 12, 1415-1431.	1.5	16
138	Measuring Height Change Around the Periphery of the Greenland Ice Sheet With Radar Altimetry. Frontiers in Earth Science, 2019, 7, .	0.8	16
139	Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn IsbrŦ), Greenland. Cryosphere, 2021, 15, 407-429.	1.5	16
140	Evolving Environmental and Geometric Controls on Columbia Glacier's Continued Retreat. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1528-1545.	1.0	14
141	Marine ice beneath the Filchner–Ronne Ice Shelf, Antarctica: a comparison of estimated thickness distributions. Annals of Glaciology, 2004, 39, 511-517.	2.8	13
142	Toward a universal glacier slip law. Science, 2020, 368, 29-30.	6.0	13
143	Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica. Cryosphere, 2020, 14, 4603-4609.	1.5	13
144	A comparison of balance velocities, measured velocities and thermomechanically modelled velocities for the Greenland ice sheet. Annals of Glaciology, 2000, 30, 211-216.	2.8	12

#	Article	IF	CITATIONS
145	icepack: a new glacier flow modeling package in Python, version 1.0. Geoscientific Model Development, 2021, 14, 4593-4616.	1.3	12
146	Constraining ice mass loss from Jakobshavn Isbrae (Greenland) using InSAR-measured crustal uplift. Geophysical Journal International, 2012, 188, 994-1006.	1.0	11
147	The role of lateral and vertical shear in tributary flow toward a West Antarctic ice stream. Annals of Glaciology, 2003, 36, 244-250.	2.8	10
148	The proposed DESDynl mission - From science to implementation. , 2011, , .		10
149	The relationship between sticky spots and radar reflectivity beneath an active West Antarctic ice stream. Annals of Glaciology, 2014, 55, 29-38.	2.8	10
150	Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers. Cryosphere, 2019, 13, 2817-2834.	1.5	10
151	Ocean-induced melt volume directly paces ice loss from Pine Island Glacier. Science Advances, 2021, 7, eabi5738.	4.7	9
152	Challenges to Understand the Dynamic Response of Greenland's Marine Terminating Glaciers to Oceanic and Atmospheric Forcing. Bulletin of the American Meteorological Society, 0, , 130117123745009.	1.7	7
153	Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland. Journal of Glaciology, 1996, 42, 564-575.	1.1	6
154	Multi-decadal retreat of marine-terminating outlet glaciers in northwest and central-west Greenland. Cryosphere, 2022, 16, 807-824.	1.5	4
155	Ice flow of Humboldt, Petermann and Ryder Gletscher, northern Greenland. Journal of Glaciology, 1999, 45, 231-241.	1.1	2
156	An observation-based approach to calculating ice-shelf calving mass flux. Remote Sensing of Environment, 2022, 272, 112918.	4.6	2
157	Ice flow in northeast Greenland derived using balance velocities as control. , 1998, , .		1
158	Identifying flowlines and limitations of flux analyses in the interior of Thwaites Glacier, Antarctica. Annals of Glaciology, 2014, 55, 107-114.	2.8	1
159	Interferometric Synthetic Aperture Radar (Insar) Study of the Northeast Greenland Ice Stream. , 0, , 383-384.		0
160	Cryosphere Sciences with NISAR. , 2021, , .		0