Shane Denecke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5884839/publications.pdf Version: 2024-02-01

SHANE DENECKE

#	Article	IF	CITATIONS
1	A spatiotemporal atlas of the lepidopteran pest Helicoverpa armigera midgut provides insights into nutrient processing and pH regulation. BMC Genomics, 2022, 23, 75.	2.8	8
2	ldentification of Helicoverpa armigera promoters for biotechnological applications. Insect Biochemistry and Molecular Biology, 2022, 142, 103725.	2.7	4
3	Using tissue specific <scp>P450</scp> expression in <i>Drosophila melanogaster</i> larvae to understand the spatial distribution of pesticide metabolism in feeding assays. Insect Molecular Biology, 2022, 31, 369-376.	2.0	4
4	Characterization of a novel pesticide transporter and P-glycoprotein orthologues in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220625.	2.6	3
5	Functional characterization and transcriptomic profiling of a spheroid-forming midgut cell line from Helicoverpa zea (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology, 2021, 128, 103510.	2.7	5
6	Can the mammalian organoid technology be applied to the insect gut?. Pest Management Science, 2021, 77, 55-63.	3.4	13
7	Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC Genomics, 2021, 22, 553.	2.8	12
8	Sublethal larval exposure to imidacloprid impacts adult behaviour in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2020, 33, 151-164.	1.7	13
9	Development of efficient RNAi in Nezara viridula for use in insecticide target discovery. Archives of Insect Biochemistry and Physiology, 2020, 103, e21650.	1.5	17
10	The Identification and Evolutionary Trends of the Solute Carrier Superfamily in Arthropods. Genome Biology and Evolution, 2020, 12, 1429-1439.	2.5	12
11	â€`What I cannot create, I do not understand': functionally validated synergism of metabolic and target site insecticide resistance. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200838.	2.6	42
12	Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. Pesticide Biochemistry and Physiology, 2020, 167, 104595.	3.6	36
13	Efficient genome editing in the olive fruit fly, <scp><i>Bactrocera oleae</i></scp> . Insect Molecular Biology, 2020, 29, 363-372.	2.0	13
14	A transcriptomic and proteomic atlas of expression in the Nezara viridula (Heteroptera: Pentatomidae) midgut suggests the compartmentalization of xenobiotic metabolism and nutrient digestion. BMC Genomics, 2020, 21, 129.	2.8	7
15	Evidence for activation of nitenpyram by a mitochondrial cytochrome P450 in Drosophila melanogaster. Pest Management Science, 2018, 74, 1616-1622.	3.4	21
16	How do oral insecticidal compounds cross the insect midgut epithelium?. Insect Biochemistry and Molecular Biology, 2018, 103, 22-35.	2.7	54
17	Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts. Insect Biochemistry and Molecular Biology, 2017, 91, 1-9.	2.7	44
18	Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster. Scientific Reports, 2017, 7, 11339.	3.3	37

#	Article	IF	CITATIONS
19	Multiple P450s and Variation in Neuronal Genes Underpins the Response to the Insecticide Imidacloprid in a Population of Drosophila melanogaster. Scientific Reports, 2017, 7, 11338.	3.3	37
20	The Wiggle Index: An Open Source Bioassay to Assess Sub-Lethal Insecticide Response in Drosophila melanogaster. PLoS ONE, 2015, 10, e0145051.	2.5	18