Yuhang Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5884417/yuhang-wang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

192 8,653 50 87 g-index

230 9,842 6.4 5.99 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
192	Characterizing the distinct modulation of future emissions on summer ozone concentrations between urban and rural areas over China <i>Science of the Total Environment</i> , 2022 , 820, 153324	10.2	3
191	Ambient observations indicating an increasing effectiveness of ammonia control in wintertime PM reduction in Central China <i>Science of the Total Environment</i> , 2022 , 153708	10.2	О
190	The striking effect of vertical mixing in the planetary boundary layer on new particle formation in the Yangtze River Delta <i>Science of the Total Environment</i> , 2022 , 829, 154607	10.2	3
189	Winter particulate pollution severity in North China driven by atmospheric teleconnections. <i>Nature Geoscience</i> , 2022 , 15, 349-355	18.3	3
188	The Impact of Meteorology and Emissions on Surface Ozone in Shandong Province, China, during Summer 2014\(\bar{2}\) 019. International Journal of Environmental Research and Public Health, 2022, 19, 6758	4.6	
187	Projection of future wildfire emissions in western USA under climate change: contributions from changes in wildfire, fuel loading and fuel moisture. <i>International Journal of Wildland Fire</i> , 2021 ,	3.2	2
186	Chemical Production of Oxygenated Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone Production. <i>Environmental Science & amp; Technology</i> , 2021 , 55, 13718-13727	10.3	4
185	Formation and dissipation dynamics of the Asian tropopause aerosol layer. <i>Environmental Research Letters</i> , 2021 , 16, 014015	6.2	3
184	Global Wildfire Plume-Rise Data Set and Parameterizations for Climate Model Applications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033085	4.4	1
183	Explicit modeling of isoprene chemical processing in polluted air masses in suburban areas of the Yangtze River Delta region: radical cycling and formation of ozone and formaldehyde. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 5905-5917	6.8	4
182	Seasonal Variations of Carbonyls and Their Contributions to the Ozone Formation in Urban Atmosphere of Taiyuan, China. <i>Atmosphere</i> , 2021 , 12, 510	2.7	2
181	A dynamical pathway bridging African biomass burning and Asian summer monsoon. <i>Climate Dynamics</i> , 2021 , 57, 1993-2004	4.2	
180	Recommendations for HCHO and SO2 Retrieval Settings from MAX-DOAS Observations under Different Meteorological Conditions. <i>Remote Sensing</i> , 2021 , 13, 2244	5	O
179	Optimal estimation of initial concentrations and emission sources with 4D-Var for air pollution prediction in a 2D transport model. <i>Science of the Total Environment</i> , 2021 , 773, 145580	10.2	1
178	Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region. <i>Atmosphere</i> , 2021 , 12, 735	2.7	O
177	Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermalöptical carbon analyzer. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 4053-4068	4	1
176	Evidence for Large Amounts of Brown Carbonaceous Tarballs in the Himalayan Atmosphere. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 16-23	11	11

(2020-2021)

175	Comprehensive evaluations of diurnal NO₂ measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NO_{<i>x</i>} emissions. <i>Atmospheric Chemistry and Physics</i> , 2021 ,	6.8	1
174	21, 11133-11160 Gasparticle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 12141-12153	6.8	1
173	Formation mechanism of HCHO pollution in the suburban Yangtze River Delta region, China: A box model study and policy implementations. <i>Atmospheric Environment</i> , 2021 , 267, 118755	5.3	1
172	Summertime Clean-Background Ozone Concentrations Derived from Ozone Precursor Relationships are Lower than Previous Estimates in the Southeast United States. <i>Environmental Science & Environmental &</i>	10.3	
171	Enhancement of ozone formation by increased vehicles emission and reduced coal combustion emission in Taiyuan, a traditional industrial city in northern China. <i>Atmospheric Environment</i> , 2021 , 11875	5 ⁵ 9 ³	2
170	Investigating the Impacts of the COVID-19 Lockdown on Trace Gases Using Ground-Based MAX-DOAS Observations in Nanjing, China. <i>Remote Sensing</i> , 2020 , 12, 3939	5	7
169	Extending Ozone-Precursor Relationships in China From Peak Concentration to Peak Time. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD033670	4.4	5
168	Validation of SAGE III/ISS Solar Occultation Ozone Products With Correlative Satellite and Ground-Based Measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD0324	1 3 0 ⁴	9
167	A three-year investigation of metals in the atmospheric wet deposition of a basin region, north China: Pollution characteristics and source apportionment. <i>Atmospheric Pollution Research</i> , 2020 , 11, 793-802	4.5	6
166	Global Measurements of Brown Carbon and Estimated Direct Radiative Effects. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL088747	4.9	26
165	Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1901-1920	6.8	32
164	Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4999-5017	6.8	14
163	The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. <i>Atmospheric Environment</i> , 2020 , 232, 117511	5.3	32
162	Characteristics, sources and regional inter-transport of ambient volatile organic compounds in a city located downwind of several large coke production bases in China. <i>Atmospheric Environment</i> , 2020 , 233, 117573	5.3	6
161	No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014. <i>Environmental Science & Environmental Scie</i>	10.3	43
160	NOx Emission Reduction and Recovery during COVID-19 in East China. <i>Atmosphere</i> , 2020 , 11, 433	2.7	115
159	Using CESM-RESFire to understand climatelirelicosystem interactions and the implications for decadal climate variability. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 995-1020	6.8	12
158	Alvacuum ultraviolet ion source (VUV-IS) for iodidelihemical ionization mass spectrometry: a substitute for radioactive ion sources. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 3683-3696	4	5

157	Isoprene Mixing Ratios Measured at Twenty Sites in China During 2012\(\bar{Q}\)014: Comparison With Model Simulation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD033523	4.4	3
156	A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China. <i>Atmospheric Environment</i> , 2020 , 242, 117672	5.3	4
155	Global Wildfire Outlook Forecast with Neural Networks. <i>Remote Sensing</i> , 2020 , 12, 2246	5	3
154	Measurements of light-absorbing impurities in snow over four glaciers on the Tibetan Plateau. <i>Atmospheric Research</i> , 2020 , 243, 105002	5.4	3
153	Observation Constrained Aromatic Emissions in Shanghai, China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD031815	4.4	4
152	Inferring the anthropogenic NO _{<i>x</i>} emission trend over the United States during 2003\(\bar{2}\)017 from satellite observations: Was there a flattening of the emission tend after the Great Recession? 2019,		1
151	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017 2019 ,		1
150	Modeling global radiative effect of brown carbon: A larger heating source in the tropical free troposphere than black carbon 2019 ,		2
149	Using MODIS derived aerosol optical depth to estimate ground-level PM2.5 concentrations over Turkey. <i>Atmospheric Pollution Research</i> , 2019 , 10, 1565-1576	4.5	15
148	Contrasting Post-Fire Dynamics between Africa and South America based on MODIS Observations. <i>Remote Sensing</i> , 2019 , 11, 1074	5	6
147	Dependence of Summertime Surface Ozone on NOx and VOC Emissions Over the United States: Peak Time and Value. <i>Geophysical Research Letters</i> , 2019 , 46, 3540-3550	4.9	13
146	Impact of the Eurasian Teleconnection on the Interannual Variability of Haze-Fog in Northern China in January. <i>Atmosphere</i> , 2019 , 10, 113	2.7	12
145	Development of a REgion-Specific Ecosystem Feedback Fire (RESFire) Model in the Community Earth System Model. <i>Journal of Advances in Modeling Earth Systems</i> , 2019 , 11, 417-445	7.1	14
144	Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. <i>Science of the Total Environment</i> , 2019 , 646, 564	-5 ¹ 72 ²	28
143	Vertical distribution of the Asian tropopause aerosols detected by CALIPSO. <i>Environmental Pollution</i> , 2019 , 253, 207-220	9.3	7
142	Comment on Insignificant effect of climate change on winter haze pollution in Beijing by Shen et al. (2018). <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 8563-8568	6.8	
141	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. <i>Science of the Total Environment</i> , 2019 , 693, 133580	10.2	16
140	High cancer risk from inhalation exposure to PAHs in Fenhe Plain in winter: A particulate size distribution-based study. <i>Atmospheric Environment</i> , 2019 , 216, 116924	5.3	7

139	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12195-1220	6 .8	43
138	Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1455-1469	6.8	45
137	Initial Cost Barrier of Ammonia Control in Central China. <i>Geophysical Research Letters</i> , 2019 , 46, 14175-1	41984	4
136	Inferring the anthropogenic NO_{<i>x</i>} emission trend over the United States during 2003Ø017 from satellite observations: was there a flattening of the emission trend after the Great Recession?. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 15339-15352	6.8	7
135	Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment. <i>Atmospheric Environment</i> , 2018 , 180, 226-233	5.3	2
134	Impacts of the Degradation of 2,3,3,3-Tetrafluoropropene into Trifluoroacetic Acid from Its Application in Automobile Air Conditioners in China, the United States, and Europe. <i>Environmental Science & Conditioners and Europe & Conditioners and Euro</i>	10.3	20
133	Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 31-47	6.8	7
132	Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 427-443	6.8	28
131	Comparing OMI-based and EPA AQS in situ NO₂ trends: towards understanding surface NO_{<i>x</i>} emission changes. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 3955-3967	4	31
130	Evidence of heterogeneous HONO formation from aerosols and the regional photochemical impact of this HONO source. <i>Environmental Research Letters</i> , 2018 , 13, 114002	6.2	16
129	Major forest increase on the Loess Plateau, China (2001\(\mathbb{Q}\)016). Land Degradation and Development, 2018 , 29, 4080-4091	4.4	17
128	Estimator of Surface Ozone Using Formaldehyde and Carbon Monoxide Concentrations Over the Eastern United States in Summer. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7642	4.4	9
127	Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes. <i>Science of the Total Environment</i> , 2017 , 580, 283-296	10.2	75
126	Derivation of Hydroperoxyl Radical Levels at an Urban Site via Measurement of Pernitric Acid by Iodide Chemical Ionization Mass Spectrometry. <i>Environmental Science & Environmental Science & Environ</i>	- 3 3:63	2
125	Development of a self-consistent lightning NOx simulation in large-scale 3-D models. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 3141-3154	4.4	7
124	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. <i>Nature Geoscience</i> , 2017 , 10, 486-489	18.3	114
123	Source apportionment and toxicity of atmospheric polycyclic aromatic hydrocarbons by PMF: Quantifying the influence of coal usage in Taiyuan, China. <i>Atmospheric Research</i> , 2017 , 193, 50-59	5.4	32
122	Arctic sea ice, Eurasia snow, and extreme winter haze in China. <i>Science Advances</i> , 2017 , 3, e1602751	14.3	141

121	Radical budget and ozone chemistry during autumn in the atmosphere of an urban site in central China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 3672-3685	4.4	23
120	Diagnosing Tibetan pollutant sources via volatile organic compound observations. <i>Atmospheric Environment</i> , 2017 , 166, 244-254	5.3	10
119	High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. <i>Environmental Science & Environmental Science</i>	10.3	48
118	Quantifying the relationship between extreme air pollution events and extreme weather events. <i>Atmospheric Research</i> , 2017 , 188, 64-79	5.4	65
117	Large biogenic contribution to boundary layer O3-CO regression slope in summer. <i>Geophysical Research Letters</i> , 2017 , 44, 7061-7068	4.9	12
116	Enhanced trans-Himalaya pollution transport to the Tibetan Plateau by cut-off low systems. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3083-3095	6.8	28
115	Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. <i>Science of the Total Environment</i> , 2016 , 541, 200-209	10.2	139
114	Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10025-30	11.5	65
113	Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 1922-193	34 ^{4·4}	33
112	Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14805-14824	6.8	38
111	Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 7383-7414	4.4	71
110	Large fire emissions in summer over the southeastern US: Satellite measurements and modeling analysis. <i>Atmospheric Environment</i> , 2016 , 127, 213-220	5.3	3
109	Impacts of Global Wildfire Aerosols on Direct Radiative, Cloud and Surface-Albedo Forcings Simulated with CAM5 2016 ,		2
108	Inverse modelling of NO_{<i>x</i>} emissions over eastern China: uncertainties due to chemical non-linearity. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 5193-5201	4	17
107	Aerosol and monsoon climate interactions over Asia. <i>Reviews of Geophysics</i> , 2016 , 54, 866-929	23.1	412
106	Characteristics and reactivity of volatile organic compounds from non-coal emission sources in China. <i>Atmospheric Environment</i> , 2015 , 115, 153-162	5.3	35
105	Coke workers' exposure to volatile organic compounds in northern China: a case study in Shanxi Province. <i>Environmental Monitoring and Assessment</i> , 2015 , 187, 359	3.1	11
104	A growing importance of large fires in conterminous United States during 1984\(\bar{\pi}\)012. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2625-2640	3.7	21

103	Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 1549-1566	5.9	17
102	Springtime daily variations in lower-tropospheric ozone over east Asia: the role of cyclonic activity and pollution as observed from space with IASI. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10839-108	568 56	26
101	A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11919-11929	6.8	58
100	Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2014 , 119, 249-263	3.7	39
99	Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 7732	2 ⁴ 7 1 40	37
98	Influence of climate variability on near-surface ozone depletion events in the Arctic spring. <i>Geophysical Research Letters</i> , 2014 , 41, 2582-2589	4.9	5
97	Surface and free tropospheric sources of methanesulfonic acid over the tropical Pacific Ocean. <i>Geophysical Research Letters</i> , 2014 , 41, 5239-5245	4.9	7
96	High levels of molecular chlorine in the Arctic atmosphere. <i>Nature Geoscience</i> , 2014 , 7, 91-94	18.3	79
95	Evidence of aerosols as a media for rapid daytime HONO production over China. <i>Environmental Science & Environmental &</i>	10.3	60
94	Global distribution and trends of tropospheric ozone: An observation-based review. <i>Elementa</i> , 2014 , 2,	3.6	292
93	Statistical downscaling of an air quality model using Fitted Empirical Orthogonal Functions. <i>Atmospheric Environment</i> , 2013 , 81, 1-10	5.3	14
92	Reduction in NO(x) emission trends over China: regional and seasonal variations. <i>Environmental Science & Environmental Scienc</i>	10.3	84
91	Observations of inorganic bromine (HOBr, BrO, and Br2) speciation at Barrow, Alaska, in spring 2009. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		58
90	Exploring the missing source of glyoxal (CHOCHO) over China. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	73
89	Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1327-1338	6.8	22
88	Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 9909-9922	6.8	33
87	Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1255-1285	6.8	55
86	Summertime photochemistry during CAREBeijing-2007: RO_x budgets and O₃ formation. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7737-7752	6.8	123

85	Integration of remote sensing data and surface observations to estimate the impact of the Russian wildfires over Europe and Asia during August 2010. <i>Biogeosciences</i> , 2011 , 8, 3771-3791	4.6	27
84	Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3511-3525	6.8	130
83	Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 13325-13337	6.8	86
82	Nationwide summer peaks of OC/EC ratios in the contiguous United States. <i>Atmospheric Environment</i> , 2011 , 45, 578-586	5.3	44
81	Diagnosis of an underestimation of summertime sulfate using the Community Multiscale Air Quality model. <i>Atmospheric Environment</i> , 2011 , 45, 5119-5130	5.3	21
80	Sources, transport, and sinks of SO2 over the equatorial Pacific during the Pacific Atmospheric Sulfur Experiment. <i>Journal of Atmospheric Chemistry</i> , 2011 , 68, 27-53	3.2	17
79	Pacific Atmospheric Sulfur Experiment (PASE): dynamics and chemistry of the south Pacific tropical trade wind regime. <i>Journal of Atmospheric Chemistry</i> , 2011 , 68, 5-25	3.2	12
78	NOx emission reduction and its effects on ozone during the 2008 Olympic Games. <i>Environmental Science & Environmental </i>	10.3	48
77	Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study. <i>Journal of Geophysical Research</i> , 2010 , 115,		30
76	A study of tropospheric ozone column enhancements over North America using satellite data and a global chemical transport model. <i>Journal of Geophysical Research</i> , 2010 , 115,		8
75	Impact of East Asian summer monsoon on the air quality over China: View from space. <i>Journal of Geophysical Research</i> , 2010 , 115,		76
74	Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. <i>Journal of Geophysical Research</i> , 2010 , 115,		181
73	Predicting response of fuel load to future changes in climate and atmospheric composition in the Southern United States. <i>Forest Ecology and Management</i> , 2010 , 260, 556-564	3.9	21
72	Assessment of secondary organic carbon in the Southeastern United States: a review. <i>Journal of the Air and Waste Management Association</i> , 2010 , 60, 1282-92	2.4	25
71	Evidence of reactive aromatics as a major source of peroxy acetyl nitrate over China. <i>Environmental Science & Environmental &</i>	10.3	69
70	Trans-Pacific transport of Asian dust and CO: accumulation of biomass burning CO in the subtropics and dipole structure of transport. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 3297-3308	6.8	17
69	Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 977-996	6.8	168
68	Understanding the contributions of anthropogenic and biogenic sources to CO enhancements and outflow observed over North America and the western Atlantic Ocean by TES and MOPITT.	5.3	9

(2008-2009)

67	Evaluation of model simulated atmospheric constituents with observations in the factor projected space: CMAQ simulations of SEARCH measurements. <i>Atmospheric Environment</i> , 2009 , 43, 1839-1849	5.3	16
66	Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: a Georgia case study. <i>Environmental Science & Environmental Sc</i>	10.3	66
65	East China plains: a "basin" of ozone pollution. Environmental Science & East China plains: a "basin" of ozone pollution. Environmental Science & East China plains: a "basin" of ozone pollution.	- 5 0.3	77
64	Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	104
63	Ozone air quality during the 2008 Beijing Olympics: effectiveness of emission restrictions. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5237-5251	6.8	168
62	Summertime impact of convective transport and lightning NO_x production over North America: modeling dependence on meteorological simulations. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4315-4327	6.8	54
61	Concentrations and sources of aerosol ions and trace elements during ANTCI-2003. <i>Atmospheric Environment</i> , 2008 , 42, 2864-2876	5.3	30
60	A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements. <i>Atmospheric Environment</i> , 2008 , 42, 2831-2848	5-3	70
59	Assessing the photochemical impact of snow NOx emissions over Antarctica during ANTCI 2003. <i>Atmospheric Environment</i> , 2008 , 42, 2849-2863	5.3	17
58	Statistical correction and downscaling of chemical transport model ozone forecasts over Atlanta. <i>Atmospheric Environment</i> , 2008 , 42, 1338-1348	5.3	25
57	Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. <i>Atmospheric Environment</i> , 2008 , 42, 4126-4137	5.3	130
56	Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance. <i>Science of the Total Environment</i> , 2008 , 394, 290-302	10.2	41
55	Spring to summer northward migration of high O3 over the western North Atlantic. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	33
54	Springtime transitions of NO2, CO, and O3 over North America: Model evaluation and analysis. <i>Journal of Geophysical Research</i> , 2008 , 113,		50
53	Impacts of prescribed fires on air quality over the Southeastern United States in spring based on modeling and ground/satellite measurements. <i>Environmental Science & Environmental Science & Environ</i>	-6 ^{0.3}	32
52	Air quality impacts from prescribed forest fires under different management practices. <i>Environmental Science & Environmental </i>	10.3	29
51	Evaluation of model-simulated source contributions to tropospheric ozone with aircraft observations in the factor-projected space. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1751-1761	6.8	4
50	Long-term trend of surface ozone at a regional background station in eastern China 1991\(\textbf{Q}\)006: enhanced variability. Atmospheric Chemistry and Physics, 2008, 8, 2595-2607	6.8	189

49	The effect of lightning NO_x production on surface ozone in the continental United States. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5151-5159	6.8	45
48	Variations of O₃ and CO in summertime at a rural site near Beijing. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 6355-6363	6.8	67
47	Source characteristics of oxygenated volatile organic compounds and hydrogen cyanide. <i>Journal of Geophysical Research</i> , 2007 , 112,		39
46	Assessing the photochemical impact of snow NOx emissions over Antarctica during ANTCI 2003. <i>Atmospheric Environment</i> , 2007 , 41, 3944-3958	5.3	48
45	Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China. <i>Atmospheric Environment</i> , 2007 , 41, 6901-6908	5.3	94
44	An ozone depletion event in the sub-arctic surface layer over Hudson Bay, Canada. <i>Journal of Atmospheric Chemistry</i> , 2007 , 57, 255-280	3.2	12
43	Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park. <i>Environmental Pollution</i> , 2007 , 149, 336-47	9.3	37
42	Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. <i>Atmospheric Environment</i> , 2006 , 40, 445-466	5.3	70
41	Late-spring increase of trans-Pacific pollution transport in the upper troposphere. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a	4.9	32
40	Inverse modeling of the global methyl chloride sources. <i>Journal of Geophysical Research</i> , 2006 , 111,		20
39	Halogen-driven low-altitude O3 and hydrocarbon losses in spring at northern high latitudes. <i>Journal of Geophysical Research</i> , 2006 , 111,		35
38	Summertime tropospheric ozone columns from Aura OMI/MLS measurements versus regional model results over the United States. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	21
37	Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	84
36	Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements. <i>Journal of Geophysical Research</i> , 2005 , 110,		119
35	Atmospheric aerosol over two urbandural pairs in the southeastern United States: Chemical composition and possible sources. <i>Atmospheric Environment</i> , 2005 , 39, 4453-4470	5.3	104
34	Photochemistry of ozone over the western Pacific from winter to spring. <i>Journal of Geophysical Research</i> , 2004 , 109,		33
33	A three-dimensional global model study of atmospheric methyl chloride budget and distributions. Journal of Geophysical Research, 2004 , 109,		44
32	On tracer correlations in the troposphere: The case of ethane and propane. <i>Journal of Geophysical Research</i> , 2004 , 109,		19

(1998-2003)

31	Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons. <i>Journal of Geophysical Research</i> , 2003 , 108,		53
30	Springtime photochemistry at northern mid and high latitudes. <i>Journal of Geophysical Research</i> , 2003 , 108,		40
29	Widespread persistent near-surface ozone depletion at northern high latitudes in spring. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	48
28	Intercontinental transport of pollution manifested in the variability and seasonal trend of springtime O3 at northern middle and high latitudes. <i>Journal of Geophysical Research</i> , 2003 , 108,		19
27	Climate forcings in Goddard Institute for Space Studies SI2000 simulations. <i>Journal of Geophysical Research</i> , 2002 , 107, ACL 2-1		270
26	Factors controlling tropospheric O3, OH, NO x and SO2 over the tropical Pacific during PEM-Tropics B. <i>Journal of Geophysical Research</i> , 2001 , 106, 32733-32747		35
25	Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models. Journal of Geophysical Research, 2001 , 106, 32691-32707		24
24	Evidence of convection as a major source of condensation nuclei in the northern midlatitude upper troposphere. <i>Geophysical Research Letters</i> , 2000 , 27, 369-372	4.9	30
23	Influence of convection and biomass burning outflow on tropospheric chemistry over the tropical Pacific. <i>Journal of Geophysical Research</i> , 2000 , 105, 9321-9333		15
22	Distribution of reactive nitrogen species in the remote free troposphere: data and model comparisons. <i>Atmospheric Environment</i> , 1999 , 33, 1403-1422	5.3	66
21	3-D global simulations of tropospheric CO distributions lesults of the GIM/IGAC intercomparison 1997 exercise. <i>Chemosphere</i> , 1999 , 1, 263-282		31
20	On the origin of tropospheric ozone and NOx over the tropical South Pacific. <i>Journal of Geophysical Research</i> , 1999 , 104, 5829-5843		123
19	Sources of reactive nitrogen in the upper troposphere during SONEX. <i>Geophysical Research Letters</i> , 1999 , 26, 2441-2444	4.9	15
18	Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure. Journal of Geophysical Research, 1998 , 103, 19149-19159		125
17	Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. <i>Journal of Geophysical Research</i> , 1998 , 103, 31123-31135		196
16	Sources and chemistry of NOx in the upper troposphere over the United States. <i>Geophysical Research Letters</i> , 1998 , 25, 1705-1708	4.9	109
15	Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere. <i>Journal of Geophysical Research</i> , 1998 , 103, 13435-13450		142
14	Global simulation of tropospheric O3-NO x -hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. <i>Journal of Geophysical Research</i> , 1998 , 103, 10757-10767		228

13	Global simulation of tropospheric O3-NO x -hydrocarbon chemistry: 2. Model evaluation and global ozone budget. <i>Journal of Geophysical Research</i> , 1998 , 103, 10727-10755	182
12	Global simulation of tropospheric O3-NO x -hydrocarbon chemistry: 1. Model formulation. <i>Journal of Geophysical Research</i> , 1998 , 103, 10713-10725	461
11	Latitudinal distribution of reactive nitrogen in the free troposphere over the Pacific Ocean in late winter/early spring. <i>Journal of Geophysical Research</i> , 1998 , 103, 28237-28246	46
10	Forcing of the Austral Autumn Surface Pressure Change over the Antarctic Continent*. <i>Journals of the Atmospheric Sciences</i> , 1997 , 54, 1410-1422	4
9	Climatologies of NOxx and NOy: A comparison of data and models. <i>Atmospheric Environment</i> , 1997 , 31, 1851-1904	99
8	Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980\(\textbf{Q} 007 \)	19
7	Comparison of the chemical evolution and characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign	2
6	Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC	1
5	Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS	2
4	Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: the role of photochemical and meteorological processes	1
3	Summertime photochemistry during CAREBeijing-2007: RO _x budgets and O ₃ formation	4
2	10 yr spatial and temporal trends of PM _{2.5} concentrations in the southeastern US estimated using high-resolution satellite data	3
1	Photochemistry of Volatile Organic Compounds in the Yellow River Delta, China: Formation of O3 and Peroxyacyl Nitrates. Journal of Geophysical Research D: Atmospheres e2021 ID035296	2