
Hironobu Tahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation Technique of Localized Surface Plasmon Resonance of Palladium Nanospheres by Coating with Titanium Dioxide Shell for Application to Photothermal Therapy Agent. Nanoscale Research Letters, 2022, 17, .	5.7	1
2	A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen. Chemical Science, 2021, 12, 4872-4882.	7.4	8
3	Enhancement of deformation of redox-active hydrogel as an actuator by increasing pendant viologens and adding filler or counter-charged polymer. Sensors and Actuators B: Chemical, 2021, 331, 129359.	7.8	5
4	Redox of Viologen for Powering and Coloring. Chemical Record, 2021, 21, 2375-2388.	5.8	8
5	Performance Improvement of Triplet–Triplet Annihilation-Based Upconversion Solid Films through Plasmon-Induced Backward Scattering of Periodic Arrays of Ag and Al. Langmuir, 2021, 37, 11508-11519.	3.5	7
6	Synthesis of Ag Nanoprisms with Precisely-tuned Localized Surface Plasmon Wavelengths by Sequential Irradiation of Light of Two Different Wavelengths. Chemistry Letters, 2020, 49, 240-243.	1.3	9
7	Combined Use of Anisotropic Silver Nanoprisms with Different Aspect Ratios for Multi-Mode Plasmon-Exciton Coupling. Nanoscale Research Letters, 2020, 15, 15.	5.7	3
8	Electron transfer controlled by solvent and counter-anion dynamics in electrochemistry of viologen-type ionic liquid. Electrochimica Acta, 2019, 320, 134559.	5.2	8
9	Plasmonic Silver Nanoprism-Induced Emissive Mode Control between Fluorescence and Phosphorescence of a Phosphorescent Palladium Porphyrin Derivative. ACS Nano, 2019, 13, 13244-13256.	14.6	16
10	Mie Resonance-Enhanced Light Absorption of FeS ₂ Nanocubes in a Near-Infrared Region: Intraparticulate Synergy between Electronic Absorption and Mie Resonances. ACS Applied Energy Materials, 2019, 2, 6472-6483.	5.1	9
11	Electrochromism of Ferrocene- and Viologen-Based Redox-Active Ionic Liquids Composite. ACS Applied Materials & Interfaces, 2019, 11, 1-6.	8.0	66
12	Precise Control of Localized Surface Plasmon Wavelengths Is Needed for Effective Enhancement of Triplet–Triplet Annihilation-Based Upconversion Emission. ACS Photonics, 2018, 5, 5025-5037.	6.6	20
13	Driving Quick and Large Amplitude Contraction of Viologen-Incorporated Poly- <scp>I</scp> -Lysine-Based Hydrogel by Reduction. ACS Applied Materials & Interfaces, 2018, 10, 36415-36424.	8.0	17
14	Electrochromism of a bipolar reversible redox-active ferrocene–viologen linked ionic liquid. Chemical Communications, 2017, 53, 2455-2458.	4.1	48
15	Efficient Photocurrent Enhancement from Porphyrin Molecules on Plasmonic Copper Arrays: Beneficial Utilization of Copper Nanoanntenae on Plasmonic Photoelectric Conversion Systems. ACS Applied Materials & Interfaces, 2017, 9, 750-762.	8.0	18
16	Effect of bromide adsorption on electrowetting of Au electrode with hexadecane. Electrochimica Acta, 2017, 251, 355-362.	5.2	10
17	Fractionation of Gold Nanorod Dimers by Stepwise Density Gradient Centrifugation. Chemistry Letters, 2017, 46, 1785-1788.	1.3	1
18	Refractive index susceptibility of palladium nanoplates with plasmonic resonance in the visible region. Optical Materials Express, 2016, 6, 859.	3.0	5

Hironobu Tahara

#	Article	IF	CITATIONS
19	Refractive Index Susceptibility of the Plasmonic Palladium Nanoparticle: Potential as the Third Plasmonic Sensing Material. ACS Nano, 2015, 9, 1895-1904.	14.6	109
20	A Dialkyl Viologen Ionic Liquid: X-ray Crystal Structure Analysis of Bis(trifluoromethanesulfonyl)imide Salts. Crystal Growth and Design, 2015, 15, 4735-4740.	3.0	16
21	Photocurrent enhancement of porphyrin molecules over a wide-wavelength region based on combined use of silver nanoprisms with different aspect ratios. Journal of Materials Chemistry C, 2015, 3, 11439-11448.	5.5	16
22	Temperature-Dependent Transport Properties of a Redox-Active Ionic Liquid with a Viologen Group. Journal of Physical Chemistry C, 2015, 119, 1067-1077.	3.1	20
23	Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays: Wavelength Dependence of Quenching and Enhancement Effects. ACS Nano, 2013, 7, 9997-10010.	14.6	157
24	Photoinduced electron-transfer reactions and magnetic field effects on the decay rates of a photogenerated biradical from zinc porphyrin–viologen linked compounds in an ionic liquid. Chemical Physics Letters, 2012, 524, 42-48.	2.6	11
25	Magnetic Field Effects on Photoelectrochemical Reactions of Porphyrin–Viologen Linked Compounds in an Ionic Liquid. Japanese Journal of Applied Physics, 2011, 50, 081605.	1.5	9
26	Magnetic Field Effects on Photoelectrochemical Reactions of a Porphyrin-Viologen Linked Compound in an Ionic Liquid. Molecular Crystals and Liquid Crystals, 2011, 539, 121/[461]-124/[464].	0.9	9
27	Effects of capping layers on the photoelectrochemical property of silver nanoparticle-modified indium–tin-oxide electrode. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 239-243.	3.9	4
28	Magnetic Field Effects on Photoelectrochemical Reactions of Porphyrin–Viologen Linked Compounds in an Ionic Liquid. Japanese Journal of Applied Physics, 2011, 50, 081605.	1.5	6
29	Dependence on Electrode Potential of the Magnetic Field Effect on Photoelectrochemical Reactions of Electrodes Modified with Porphyrin–Viologen Linked Compounds. Japanese Journal of Applied	1.5	12