Kalidas Shetty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5884340/publications.pdf

Version: 2024-02-01

254 papers 12,173 citations

61 h-index 99 g-index

287 all docs

287 docs citations

times ranked

287

11501 citing authors

#	Article	IF	CITATIONS
1	Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 2010, 101, 4676-4689.	9.6	483
2	Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science and Emerging Technologies, 2007, 8, 46-54.	5.6	403
3	In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technology, 2008, 99, 2981-2988.	9.6	325
4	Prevention of Vitrification Aßociated with in vitro Shoot Culture of Oregano. (Origanum vulgare) by Pseudomonas spp Journal of Plant Physiology, 1995, 147, 447-451.	3 . 5	290
5	Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochemistry, 2005, 40, 809-816.	3.7	272
6	Health Benefits of Traditional Corn, Beans, and Pumpkin: <i>In Vitro </i> Studies for Hyperglycemia and Hypertension Management. Journal of Medicinal Food, 2007, 10, 266-275.	1.5	266
7	Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 2006, 15, 107-18.	0.4	259
8	Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry, 2004, 39, 637-646.	3.7	228
9	BIOLOGICAL FUNCTIONALITY OF ELLAGIC ACID: A REVIEW. Journal of Food Biochemistry, 2005, 29, 234-266.	2.9	214
10	INHIBITORY POTENTIAL OF WINE AND TEA AGAINST α-AMYLASE AND α-GLUCOSIDASE FOR MANAGEMENT OF HYPERGLYCEMIA LINKED TO TYPE 2 DIABETES. Journal of Food Biochemistry, 2008, 32, 15-31.	2.9	203
11	Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresource Technology, 2009, 100, 6107-6113.	9.6	188
12	Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Science and Emerging Technologies, 2008, 9, 355-364.	5 . 6	181
13	Title is missing!. Journal of Applied Phycology, 1999, 11, 559-566.	2.8	162
14	ANTI-AMYLASE, ANTI-GLUCOSIDASE AND ANTI-ANGIOTENSIN I-CONVERTING ENZYME POTENTIAL OF SELECTED FOODS. Journal of Food Biochemistry, 2005, 29, 278-294.	2.9	159
15	Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review. Process Biochemistry, 2004, 39, 789-804.	3.7	151
16	Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium) Tj ETQq0 0 0 rgBT /Ove 367-379.	erlock 10 T 3.7	Tf 50 147 Td (149
17	A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pacific Journal of Clinical Nutrition, 2004, 13, 1-24.	0.4	146
18	Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process Biochemistry, 2017, 59, 141-149.	3.7	144

#	Article	IF	Citations
19	Health Benefits of Soy Isoflavonoids and Strategies for Enhancement: A Review. Critical Reviews in Food Science and Nutrition, 2004, 44, 361-367.	10.3	139
20	THE STIMULATION OF PHENOLICS AND ANTIOXIDANT ACTIVITY IN PEA (PISUM SATIVUM) ELICITED BY GENETICALLY TRANSFORMED ANISE ROOT EXTRACT. Journal of Food Biochemistry, 2001, 25, 361-377.	2.9	137
21	SOLID-STATE PRODUCTION OF PHENOLIC ANTIOXIDANTS FROM CRANBERRY POMACE BY RHIZOPUS OLIGOSPORUS. Food Biotechnology, 2002, 16, 189-210.	1.5	135
22	Inhibition of Helicobacter pylori and Associated Urease by Oregano and Cranberry Phytochemical Synergies. Applied and Environmental Microbiology, 2005, 71, 8558-8564.	3.1	132
23	Solid-State Bioconversion of Phenolics from Cranberry Pomace and Role ofLentinus edodesβ-Glucosidase. Journal of Agricultural and Food Chemistry, 2000, 48, 895-900.	5.2	131
24	Inhibition of Listeria monocytogenes in Fish and Meat Systems by Use of Oregano and Cranberry Phytochemical Synergies. Applied and Environmental Microbiology, 2004, 70, 5672-5678.	3.1	127
25	Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pacific Journal of Clinical Nutrition, 2004, 13, 101-6.	0.4	127
26	Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pacific Journal of Clinical Nutrition, 2004, 13, 295-307.	0.4	123
27	Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochemistry, 2005, 40, 1791-1797.	3.7	121
28	EVALUATION OF PEPPER (CAPSICUM ANNUUM) FOR MANAGEMENT OF DIABETES AND HYPERTENSION. Journal of Food Biochemistry, 2007, 31, 370-385.	2.9	121
29	Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutrition Research, 2014, 34, 106-115.	2.9	115
30	Functionality of Bioactive Compounds in Brazilian Strawberry (Fragaria \tilde{A} — ananassa Duch.) Cultivars: Evaluation of Hyperglycemia and Hypertension Potential Using in Vitro Models. Journal of Agricultural and Food Chemistry, 2008, 56, 4386-4392.	5.2	113
31	Phenolic-linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Bioresource Technology, 2010, 101, 404-413.	9.6	112
32	Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pacific Journal of Clinical Nutrition, 2005, 14, 120-30.	0.4	110
33	A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochemistry, 2000, 35, 603-613.	3.7	109
34	Role of Carbohydrate-Cleaving Enzymes in Phenolic Antioxidant Mobilization from Whole Soybean Fermented withRhizopus oligosporus. Food Biotechnology, 2003, 17, 27-37.	1.5	109
35	Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innovative Food Science and Emerging Technologies, 2007, 8, 197-204.	5.6	106
36	Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens. Innovative Food Science and Emerging Technologies, 2004, 5, 81-91.	5.6	100

#	Article	IF	Citations
37	Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochemistry, 1999, 34, 31-37.	3.7	97
38	Phenolic Content in Differentiated Tissue Cultures of Untransformed and Agrobacterium-Transformed Roots of Anise (Pimpinella anisumL.). Journal of Agricultural and Food Chemistry, 1999, 47, 1776-1780.	5.2	97
39	Cranberry synergies for dietary management of Helicobacter pylori infections. Process Biochemistry, 2005, 40, 1583-1592.	3.7	95
40	Evaluation of Antiproliferative, Anti-Type 2 Diabetes, and Antihypertension Potentials of Ellagitannins from Strawberries (<i>Fragaria</i> A— <i>ananassa</i> Duch.) Using <i>In Vitro</i> Models. Journal of Medicinal Food, 2010, 13, 1027-1035.	1.5	94
41	Acrylamide in food: a model for mechanism of formation and its reduction. Innovative Food Science and Emerging Technologies, 2003, 4, 331-338.	5.6	93
42	Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors. Process Biochemistry, 2005, 40, 1721-1732.	3.7	91
43	Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresource Technology, 2007, 98, 1393-1404.	9.6	91
44	Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes. Process Biochemistry, 2000, 35, 825-830.	3.7	85
45	Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. International Journal of Food Microbiology, 2008, 128, 317-324.	4.7	82
46	Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba. Process Biochemistry, 2002, 37, 1285-1295.	3.7	81
47	Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pacific Journal of Clinical Nutrition, 2006, 15, 433-41.	0.4	79
48	l-DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochemistry, 2002, 37, 1247-1256.	3.7	78
49	CLONAL VARIATION IN RASPBERRY FRUIT PHENOLICS AND RELEVANCE FOR DIABETES AND HYPERTENSION MANAGEMENT. Journal of Food Biochemistry, 2007, 31, 656-679.	2.9	77
50	Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochemistry, 2004, 39, 2167-2172.	3.7	74
51	Antimicrobial activity against select food-borne pathogens by phenolic antioxidants enriched in cranberry pomace by solid-state bioprocessing using the food grade fungus Rhizopus oligosporus. Process Biochemistry, 2004, 39, 1939-1946.	3.7	73
52	Enhancement of seed vigour following insecticide and phenolic elicitor treatment. Bioresource Technology, 2007, 98, 623-632.	9.6	73
53	Microwave-induced stimulation of l-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson's diet. Process Biochemistry, 2004, 39, 1775-1784.	3.7	72
54	Inhibition of Staphylococcus aureusby Phenolic Phytochemicals of Selected Clonal Herbs Species of Lamiaceae Family and Likely Mode of Action through Proline Oxidation. Food Biotechnology, 2007, 21, 71-89.	1.5	72

#	Article	IF	Citations
55	Evaluation of Antihyperglycemia and Antihypertension Potential of Native Peruvian Fruits Using <i>In Vitro </i> Models. Journal of Medicinal Food, 2009, 12, 278-291.	1.5	70
56	Fermentation of Milk and Soymilk by <i>Lactobacillus bulgaricus</i> acidophilusEnhances Functionality for Potential Dietary Management of Hyperglycemia and Hypertension. Food Biotechnology, 2007, 21, 217-236.	1.5	69
57	Evaluation of Indigenous Grains from the Peruvian Andean Region for Antidiabetes and Antihypertension Potential UsingIn VitroMethods. Journal of Medicinal Food, 2009, 12, 704-713.	1.5	69
58	In vitro bioassay based screening of antihyperglycemia and antihypertensive activities of Lactobacillus acidophilus fermented pear juice. Innovative Food Science and Emerging Technologies, 2012, 13, 221-230.	5.6	69
59	Stimulation of Rosmarinic Acid in Shoot Cultures of Oregano (Origanumvulgare) Clonal Line in Response to Proline, Proline Analogue, and Proline Precursors. Journal of Agricultural and Food Chemistry, 1998, 46, 2888-2893.	5. 2	67
60	Inhibitory Potential of Tea Polyphenolics and Influence of Extraction Time Against <i>Helicobacter pylori</i> and Lack of Inhibition of Beneficial Lactic Acid Bacteria. Journal of Medicinal Food, 2011, 14, 1321-1329.	1.5	67
61	Proline, thioproline and potassium mediated stimulation of somatic embryogenesis in alfalfa (Medicago sativa L.). Plant Science, 1993, 88, 185-193.	3.6	66
62	Cranberry processing waste for solid state fungal inoculant production. Process Biochemistry, 1998, 33, 323-329.	3.7	60
63	Metabolic Stimulation of Plant Phenolics for Food Preservation and Health. Annual Review of Food Science and Technology, 2014, 5, 395-413.	9.9	60
64	Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pacific Journal of Clinical Nutrition, 2005, 14, 145-52.	0.4	60
65	Antioxidant Activity Associated with Lipid and Phenolic Mobilization during Seed Germination of Pangium eduleReinw Journal of Agricultural and Food Chemistry, 1999, 47, 3158-3163.	5.2	57
66	Phenolicâ€Linked Biochemical Rationale for the Antiâ€Diabetic Properties of <i>Swertia chirayita</i> (Roxb. ex Flem.) Karst Phytotherapy Research, 2013, 27, 227-235.	5.8	57
67	Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 2006, 15, 425-32.	0.4	57
68	Antidiabetes and Antihypertension Potential of Commonly Consumed Carbohydrate Sweeteners Using <i>In Vitro</i> Models. Journal of Medicinal Food, 2008, 11, 337-348.	1.5	56
69	Potential of Ginkgo biloba L. leaves in the management of hyperglycemia and hypertension using in vitro models. Bioresource Technology, 2009, 100, 6599-6609.	9.6	56
70	Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and I-DOPA. Innovative Food Science and Emerging Technologies, 2004, 5, 235-244.	5.6	53
71	Enhancement of pea (Pisum sativum) seedling vigour and associated phenolic content by extracts of apple pomace fermented with Trichoderma spp Process Biochemistry, 2000, 36, 79-84.	3.7	52
72	Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia Mc. Vaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Research International, 2015, 77, 194-203.	6.2	52

#	Article	IF	CITATIONS
73	Inhibitory effect of clonal oregano extracts against porcine pancreatic amylase in vitro. Asia Pacific Journal of Clinical Nutrition, 2004, 13, 401-8.	0.4	51
74	Phenolic Antioxidant Biosynthesis in Plants for Functional Food Application: Integration of Systems Biology and Biotechnological Approaches. Food Biotechnology, 2003, 17, 67-97.	1.5	50
7 5	Inhibition of Vibrio parahaemolyticus in seafood systems using oregano and cranberry phytochemical synergies and lactic acid. Innovative Food Science and Emerging Technologies, 2005, 6, 453-458.	5.6	48
76	SOLID-STATE BIOCONVERSION OF PHENOLIC ANTIOXIDANTS FROM DEFATTED SOYBEAN POWDERS BY RHIZOPUS OLIGOSPORUS: ROLE OF CARBOHYDRATE-CLEAVING ENZYMES. Journal of Food Biochemistry, 2003, 27, 501-514.	2.9	47
77	Comparison of the inhibitory and lethal effects of synthetic versions of plant metabolites (anethole,) Tj ETQq1 1 0 Biotechnology, 1996, 10, 55-73.).784314 1.5	rgBT /Overlo 46
78	HEALTH BENEFITS OF APPLE PHENOLICS FROM POSTHARVEST STAGES FOR POTENTIAL TYPE 2 DIABETES MANAGEMENT USING <i>IN VITRO</i> Is MODELS. Journal of Food Biochemistry, 2010, 34, 31-49.	2.9	46
79	Interaction of hyperhydricityâ€preventing <i>pseudomonas</i> sp. with oregano (<i>origanum) Tj ETQq1 1 0.7843 Biotechnology, 1996, 10, 191-202.</i>	314 rgBT / 1.5	Overlock 10 45
80	Potential of Chilean Native Corn (<i>Zea mays</i> L.) Accessions as Natural Sources of Phenolic Antioxidants and in Vitro Bioactivity for Hyperglycemia and Hypertension Management. Journal of Agricultural and Food Chemistry, 2013, 61, 10995-11007.	5.2	44
81	Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic Fractions from a Peruvian Purple Corn (<i>Zea mays</i> L.) Accession. Journal of Food Science, 2017, 82, 2968-2976.	3.1	44
82	A mathematical model for the growth kinetics and synthesis of phenolics in oregano (Origanum) Tj ETQq0 0 0 rgE	BT/Overlo 3.7	ck ₄₃ 0 Tf 50 :
83	Biosynthesis and Medical Applications of Rosmarinic Acid. Journal of Herbs, Spices and Medicinal Plants, 2001, 8, 161-181.	1.1	43
84	Light-mediated fava bean (Vicia faba) response to phytochemical and protein elicitors and consequences on nutraceutical enhancement and seed vigour. Process Biochemistry, 2003, 38, 945-952.	3.7	40
85	Mobilization of phenolic antioxidants from defatted soybean powders by Lentinus edodes during solid-state bioprocessing is associated with enhanced production of laccase. Innovative Food Science and Emerging Technologies, 2004, 5, 385-392.	5.6	40
86	SYNERGISM OF CRANBERRY PHENOLICS WITH ELLAGIC ACID AND ROSMARINIC ACID FOR ANTIMUTAGENIC AND DNA PROTECTION FUNCTIONS. Journal of Food Biochemistry, 2006, 30, 98-116.	2.9	40
87	<i>Rhodiola</i> â€induced inhibition of adipogenesis involves antioxidant enzyme response associated with pentose phosphate pathway. Phytotherapy Research, 2011, 25, 106-115.	5.8	40
88	EVALUATION OF RED CURRANTS (<i>RIBES RUBRUM</i> L.), BLACK CURRANTS (<i>RIBES NIGRUM</i> L.), RED AND GREEN GOOSEBERRIES (<i>RIBES UVA-CRISPA</i>) FOR POTENTIAL MANAGEMENT OF TYPE 2 DIABETES AND HYPERTENSION USING <i>IN VITRO</i> MODELS. Journal of Food Biochemistry, 2010, 34, 639.	2.9	38
89	Stimulation of benzyladenine-induced in vitro shoot organogenesis in Cucumis melo L. by proline, salicylic acid and aspirin. Plant Science, 1992, 84, 193-199.	3.6	37
90	Anti-Diabetes Functionality of Kefir Culture-Mediated Fermented Soymilk Supplemented withRhodiolaExtracts. Food Biotechnology, 2006, 20, 13-29.	1.5	37

#	Article	IF	Citations
91	Improving anti-hyperglycemic and anti-hypertensive properties of camu-camu (Myriciaria dubia Mc.) Tj ETQq1 1 (0.784314 r	gBT/Overlo
92	Improved health-relevant functionality in dark germinated Mucuna pruriens sprouts by elicitation with peptide and phytochemical elicitors. Bioresource Technology, 2009, 100, 4507-4514.	9.6	36
93	Phenolic linked anti-hyperglycemic bioactives of barley (Hordeum vulgare L.) cultivars as nutraceuticals targeting type 2 diabetes. Industrial Crops and Products, 2017, 107, 509-517.	5.2	36
94	Seed vigour studies in corn, soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses. Bioresource Technology, 2007, 98, 2170-2177.	9.6	35
95	Changes in physico-chemical, astringency, volatile compounds and antioxidant activity of fresh and concentrated cashew apple juice fermented with Lactobacillus plantarum. Journal of Food Science and Technology, 2018, 55, 3979-3990.	2.8	35
96	Stimulation of in vitro shoot organogenesis in Glycine max (Merrill.) by allantoin and amides. Plant Science, 1992, 81, 245-251.	3.6	34
97	Enhancement of antioxidant activity and inhibition of Helicobacter pylori by phenolic phytochemical-enriched alcoholic beverages. Process Biochemistry, 2005, 40, 2059-2065.	3.7	34
98	EFFECTS OF PROLINE AND PROLINE ANALOGS ON TOTAL PHENOLIC AND ROSMARINIC ACID LEVELS IN SHOOT CLONES OF THYME (Thymus vulgaris L.). Journal of Food Biochemistry, 1998, 22, 37-51.	2.9	33
99	<i>Rhodiola crenulata</i> Induces Death and Inhibits Growth of Breast Cancer Cell Lines. Journal of Medicinal Food, 2008, 11, 413-423.	1.5	33
100	FERMENTATION OF WHOLE APPLE JUICE USING <i>LACTOBACILLUS ACIDOPHILUS</i> FOR POTENTIAL DIETARY MANAGEMENT OF HYPERGLYCEMIA, HYPERTENSION, AND MODULATION OF BENEFICIAL BACTERIAL RESPONSES. Journal of Food Biochemistry, 2012, 36, 718-738.	2.9	33
101	Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Industrial Crops and Products, 2017, 107, 518-525.	5.2	33
102	Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy. Journal of Food Science and Technology, 2017, 54, 3666-3678.	2.8	33
103	ENHANCEMENT OF TOTAL PHENOLIC, L-DOPA AND PROLINE CONTENTS IN GERMINATING FAVA BEAN (VICIA) TJ	ЕТО91 1 С).784314 rg
104	EFFECT OF THERMAL TREATMENT ON PHENOLIC COMPOUNDS AND FUNCTIONALITY LINKED TO TYPE 2 DIABETES AND HYPERTENSION MANAGEMENT OF PERUVIAN AND BRAZILIAN BEAN CULTIVARS (<i>PHASEOLUS VULGARIS</i> L.) USING <i>IN VITRO</i> METHODS. Journal of Food Biochemistry, 2010, 34, 329-355.	2.9	31
105	Solid-State Production of Beneficial Fungi on Apple Processing Wastes Using Glucosamine as the Indicator of Growth. Journal of Agricultural and Food Chemistry, 1998, 46, 783-787.	5.2	30
106	AMYLASE AND HELICOBACTER PYLORI INHIBITION BY PHENOLIC EXTRACTS OF PINEAPPLE WASTES BIOPROCESSED BY RHIZOPUS OLIGOSPORUS. Journal of Food Biochemistry, 2004, 28, 419-434.	2.9	30
107	Potential of Cranberry Powder for Management of Hyperglycemia Using <i>In Vitro </i> Models. Journal of Medicinal Food, 2010, 13, 1036-1044.	1.5	30
108	Dietary functional benefits of Bartlett and Starkrimson pears for potential management of hyperglycemia, hypertension and ulcer bacteria Helicobacter pylori while supporting beneficial probiotic bacterial response. Food Research International, 2015, 69, 80-90.	6.2	30

#	Article	IF	CITATIONS
109	A model for the involvement of lignin degradation enzymes in phenolic antioxidant mobilization from whole soybean during solid-state bioprocessing by Lentinus edodes. Process Biochemistry, 2005, 40, 1143-1150.	3.7	29
110	Lactobacillus plantarum and natural fermentation-mediated biotransformation of flavor and aromatic compounds in horse gram sprouts. Process Biochemistry, 2018, 66, 7-18.	3.7	29
111	Cranberry phenolics-mediated antioxidant enzyme response in oxidatively stressed porcine muscle. Process Biochemistry, 2005, 40, 2225-2238.	3.7	28
112	Azo Dye-Mediated Regulation of Total Phenolics and Peroxidase Activity in Thyme (Thymus vulgarisL.) and Rosemary (Rosmarinus officinalisL.) Clonal Lines. Journal of Agricultural and Food Chemistry, 2000, 48, 932-937.	5.2	27
113	Varietal Influences on Antihyperglycemia Properties of Freshly Harvested Apples Using <i>In Vitro </i> Assay Models. Journal of Medicinal Food, 2010, 13, 1313-1323.	1.5	27
114	Selection of High Phenolics-Containing Clones of Thyme (Thymus vulgarisL.) UsingPseudomonas Sp Journal of Agricultural and Food Chemistry, 1996, 44, 3408-3411.	5.2	26
115	Specific interaction of mucoid strains of Pseudomonas spp. with oregano (Origanum vulgare) clones and the relationship to prevention of hyperhydricity in tissue culture. Journal of Plant Physiology, 1996, 149, 605-611.	3.5	26
116	Improvement of pea (Pisum sativum) seed vigour response by fish protein hydrolysates in combination with acetyl salicylic acid. Process Biochemistry, 1999, 35, 159-165.	3.7	26
117	A model for the role of the proline-linked pentose phosphate pathway in polymeric dye tolerance in oregano. Process Biochemistry, 2001, 36, 941-946.	3.7	26
118	Stimulation of total phenolics, L-DOPA and antioxidant activity through proline-linked pentose phosphate pathway in response to proline and its analogue in germinating fava beans (Vicia faba). Process Biochemistry, 2003, 38, 1707-1717.	3.7	26
119	Inhibition ofListeria monocytogenesby Elite Clonal Extracts of Oregano (Origanum vulgare). Food Biotechnology, 2003, 17, 129-149.	1.5	26
120	Food Diversity and Indigenous Food Systems to Combat Diet-Linked Chronic Diseases. Current Developments in Nutrition, 2020, 4, 3-11.	0.3	26
121	Cold Acclimation Responses of Three Cool-season Turfgrasses and the Role of Proline-associated Pentose Phosphate Pathway. Journal of the American Society for Horticultural Science, 2009, 134, 210-220.	1.0	26
122	The Influence of Organic Nitrogen Sources on the Induction of Embryogenic Callus in Agrostis alba L Journal of Plant Physiology, 1991, 139, 82-85.	3.5	25
123	A model for involvement of proline during <i>pseudomonasâ€meaiated</i> stimulation of rosmarinic acid levels in oregano shoot clones. Food Biotechnology, 1999, 13, 137-154.	1.5	25
124	A BIOCHEMICAL ANALYSIS OF MUNGBEAN (VIGNA RADIATA) RESPONSE TO MICROBIAL POLYSACCHARIDES AND POTENTIAL PHENOLIC-ENHANCING EFFECTS FOR NUTRACEUTICAL APPLICATIONS. Food Biotechnology, 2002, 16, 57-79.	1.5	25
125	Peroxidase activity and phenolic content in elite clonal lines of Mentha pulegium in response to polymeric dye R-478 and Agrobacterium rhizogenes. Process Biochemistry, 2002, 37, 805-812.	3.7	25
126	Nutritional biotransformation in traditional fermented tea (Miang) from north Thailand and its impact on antioxidant and antimicrobial activities. Journal of Food Science and Technology, 2019, 56, 2687-2699.	2.8	25

#	Article	IF	CITATIONS
127	The role of proline-associated pentose phosphate pathway in cool-season turfgrasses after UV-B exposure. Environmental and Experimental Botany, 2011, 70, 251-258.	4.2	24
128	Tannin-tolerant and Extracellular Tannase Producing Bacillus Isolated from Traditional Fermented Tea Leaves and Their Probiotic Functional Properties. Foods, 2020, 9, 490.	4.3	24
129	Stimulation of Benzyladenine-Induced in Vitro Shoot Organogenesis and Endogenous Proline in Melon (Cucumis meloL.) by Fish Protein Hydrolysates in Combination with Proline Analogues. Journal of Agricultural and Food Chemistry, 1999, 47, 1771-1775.	5.2	22
130	A role for amylase and peroxidase-linked polymerization in phenolic antioxidant mobilization in dark-germinated soybean and implications for health. Process Biochemistry, 2004, 39, 1785-1791.	3.7	22
131	Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. Journal of Food Science and Technology, 2019, 56, 2909-2924.	2.8	22
132	Reduction of hyperhydricity in tissue cultures of oregano (Origanum vulgare) by extracellular polysaccharide isolated from Pseudomonas spp. Plant Science, 1996, 120, 175-183.	3.6	21
133	PHENOLIC ANTIOXIDANT ENRICHMENT OF SOY FLOUR-SUPPLEMENTED GUAVA WASTE BY RHIZOPUS OLIGOSPORUS-MEDIATED SOLID-STATE BIOPROCESSING. Journal of Food Biochemistry, 2004, 28, 404-418.	2.9	21
134	POTENTIAL OF SELECT YOGURTS FOR DIABETES AND HYPERTENSION MANAGEMENT. Journal of Food Biochemistry, 2006, 30, 699-717.	2.9	21
135	Probiotic and Antioxidant Properties of Lactic Acid Bacteria Isolated from Indigenous Fermented Tea Leaves (Miang) of North Thailand and Promising Application in Synbiotic Formulation. Fermentation, 2021, 7, 195.	3.0	21
136	QUANTIFICATION OF MAJOR PHYTOCHEMICALS OF SWERTIA CHIRAYITA, A MEDICINAL PLANT FROM NEPAL. Ecoprint an International Journal of Ecology, 0, 17, 59-68.	0.1	20
137	PSEUDOMONAS SPPMEDIATED REGULATION OF TOTAL PHENOLIC AND ROSMARINIC ACID LEVELS IN SHOOT-BASED CLONAL LINES OF THYME (THYMUS VULGARIS L.). Journal of Food Biochemistry, 1996, 20, 365-377.	2.9	20
138	INFLUENCE OF ACETYL SALICYLIC ACID IN COMBINATION WITH FISH PROTEIN HYDROLYSATES ON HYPERHYDRICITY REDUCTION AND PHENOLIC SYNTHESIS IN OREGANO (ORIGANUM VULGARE) TISSUE CULTURES. Journal of Food Biochemistry, 1999, 23, 619-635.	2.9	20
139	Tissue Culture Based Screening for Selection of High Biomass and Phenolic Producing Clonal Lines of Lavender UsingPseudomonasand Azetidine-2-carboxylate. Journal of Agricultural and Food Chemistry, 1999, 47, 2937-2943.	5.2	20
140	INHIBITION OF HELICOBACTER PYLORI BY PHENOLIC EXTRACTS OF SPROUTED PEAS (PISUM SATIVUM L.). Journal of Food Biochemistry, 2006, 30, 21-34.	2.9	20
141	Effect of Agrobacterium rhizogenes on phenolic content of Mentha pulegium elite clonal line for phytoremediation applications. Process Biochemistry, 2002, 38, 287-293.	3.7	19
142	APPLE POSTHARVEST PRESERVATION IS LINKED TO PHENOLIC CONTENT AND SUPEROXIDE DISMUTASE ACTIVITY. Journal of Food Biochemistry, 2009, 33, 535-556.	2.9	19
143	Antimicrobial Activity of an Amazon Medicinal Plant (Chancapiedra) (<i>Phyllanthus niruri</i> L.) against <i>Helicobacter pylori</i> and Lactic Acid Bacteria. Phytotherapy Research, 2012, 26, 791-799.	5.8	19
144	Production of I -Phenylalanine from Starch by Analog-Resistant Mutants of Bacillus polymyxa. Applied and Environmental Microbiology, 1986, 52, 637-643.	3.1	19

#	Article	IF	Citations
145	CRANBERRY PHENOLICS-MEDIATED ELICITATION OF ANTIOXIDANT ENZYME RESPONSE IN FAVA BEAN (VICIA)	Гј ЕТ <u>О</u> д 1	1 0.784314 rg
146	EFFECT OF THERMAL PROCESSING ON THE PHENOLIC ASSOCIATED HEALTH-RELEVANT FUNCTIONALITY OF SELECTED LEGUME SPROUTS AND SEEDLINGS. Journal of Food Biochemistry, 2009, 33, 89-112.	2.9	18
147	Inhibition of <i>Helicobacter pylori </i> by Fermented Milk and Soymilk Using Select Lactic Acid Bacteria and Link to Enrichment of Lactic Acid and Phenolic Content. Food Biotechnology, 2011, 25, 58-76.	1.5	17
148	Evaluation of phenolic bioactive-linked functionality of blackberry cultivars targeting dietary management of early stages type-2 diabetes using in vitro models. Scientia Horticulturae, 2016, 212, 193-202.	3.6	17
149	In vitro screening and evaluation of phenolic antioxidant-linked anti-hyperglycemic functions of rabbit-eye blueberry (Vaccinium ashei) cultivars. Journal of Berry Research, 2017, 7, 163-177.	1.4	17
150	Microbial Community Dynamics During the Non-filamentous Fungi Growth-Based Fermentation Process of Miang, a Traditional Fermented Tea of North Thailand and Their Product Characterizations. Frontiers in Microbiology, 2020, 11, 1515.	3.5	17
151	Reduced hyperhydricity and enhanced growth of tissue culture-generated raspberry (Rubus sp.) clonal lines by Pseudomonas sp. isolated from oregano. Process Biochemistry, 1998, 33, 441-445.	3.7	16
152	Radical Scavengingâ€Linked Antioxidant Activity of Ethanolic Extracts of Diverse Types of Extra Virgin Olive Oils. Journal of Food Science, 2008, 73, C519-25.	3.1	16
153	Improved resilience and metabolic response of transplanted blackberry plugs using chitosan oligosaccharide elicitor treatment. Canadian Journal of Plant Science, 2018, 98, 717-731.	0.9	16
154	Prevalence and Characterization of Extended-Spectrum \hat{I}^2 -Lactamase-Producing Antibiotic-Resistant Escherichia coli and Klebsiella pneumoniae in Ready-to-Eat Street Foods. Antibiotics, 2021, 10, 850.	3.7	16
155	Prevention of hyperhydricity in oregano shoot cultures is sustained through multiple subcultures by selected polysaccharide-producing soil bacteria without re-inoculation. Applied Microbiology and Biotechnology, 1998, 50, 119-124.	3.6	15
156	Antioxidant enzyme response studies in H2O2-stressed porcine muscle tissue following treatment with oregano phenolic extracts. Process Biochemistry, 2005, 40, 2123-2134.	3.7	15
157	ELICITATION OF THE PROLINE-LINKED PENTOSE PHOSPHATE PATHWAY METABOLITES AND ANTIOXIDANT ENZYME RESPONSE BY ASCORBIC ACID IN DARK GERMINATED FAVA BEAN SPROUTS. Journal of Food Biochemistry, 2007, 31, 485-508.	2.9	15
158	Clonal response to cold tolerance in creeping bentgrass and role of proline-associated pentose phosphate pathway. Bioresource Technology, 2009, 100, 5332-5339.	9.6	15
159	Apple and Blueberry Synergies for Designing Bioactive Ingredients for the Management of Early Stages of Type 2 Diabetes. Journal of Food Quality, 2016, 39, 370-382.	2.6	15
160	Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Frontiers in Endocrinology, 2021, 12, 727503.	3.5	15
161	Stimulation of novel phenolic metabolite, epoxyâ€pseudoisoeugenolâ€(2â€methylbutyrate) (EPB), in transformed anise (<i>pimpinella anisum</i> L.) root cultures by fish protein hydrolysates. Food Biotechnology, 2000, 14, 1-20.	1.5	14
162	Phenolic Bioactive Modulation by <i>Lactobacillus acidophilus </i> Mediated Fermentation of Cherry Extracts for Anti-Diabetic Functionality, <i>Helicobacter pylori </i> Inhibition and Probiotic <i <="" bifidobacterium="" i="" longum="">Stimulation. Food Biotechnology, 2011, 25, 305-335.</i>	1.5	14

#	Article	IF	CITATIONS
163	Type 2 Diabetes Relevant Bioactive Potential of Freshly Harvested and Long-Term Stored Pears Using (i) in vitro (i) Assay Models. Journal of Food Biochemistry, 2013, 37, 677-686.	2.9	14
164	Inhibition of Foodborne Pathogens by Pomegranate Juice. Journal of Medicinal Food, 2013, 16, 467-470.	1.5	14
165	Ethnic food perspective of North Dakota Common Emmer Wheat and relevance for health benefits targeting type 2 diabetes. Journal of Ethnic Foods, 2018, 5, 66-74.	1.9	14
166	Ancestral Peruvian ethnic fermented beverage "Chicha―based on purple corn (Zea mays L.): unraveling the health-relevant functional benefits. Journal of Ethnic Foods, 2020, 7, .	1.9	14
167	Role of Marine Bacterial Contaminants in Histamine Formation in Seafood Products: A Review. Microorganisms, 2022, 10, 1197.	3.6	14
168	SOMATIC EMBRYOGENESIS IN ANISE (PIMPINELLA ANISUM L.): THE EFFECT OF PROLINE ON EMBRYOGENIC CALLUS FORMATION AND ABA ON ADVANCED EMBRYO DEVELOPMENT. Journal of Food Biochemistry, 1999, 23, 17-32.	2.9	13
169	Phenolic compounds and total antioxidant activity determination in rosemary and oregano extracts and its use in cheese spread. Semina: Ciencias Agrarias, 2012, 33, 655-666.	0.3	13
170	Metabolic stimulation of phenolic biosynthesis and antioxidant enzyme response in dark germinated barley (Hordeum vulgare L.) sprouts using bioprocessed elicitors. Food Science and Biotechnology, 2019, 28, 1093-1106.	2.6	13
171	Primary and Phenolic Metabolites Analyses, In Vitro Health-Relevant Bioactivity and Physical Characteristics of Purple Corn (Zea mays L.) Grown at Two Andean Geographical Locations. Metabolites, 2021, 11, 722.	2.9	13
172	Comparison of the growth pattern and Rosharinic acid production in rosemary <i>(Rosmarinus) Tj ETQq0 0 0 rgl 27-41.</i>	BT /Overloo 1.5	ck 10 Tf 50 38 12
173	Enrichment of Phenolic Antioxidants and Anti-Helicobacter pyloriProperties of Cranberry Pomace by Solid-State Bioprocessing. Food Biotechnology, 2005, 19, 51-68.	1.5	12
174	Beneficial lactic acid bacteria based bioprocessing of cashew apple juice for targeting antioxidant nutraceutical inhibitors as relevant antidotes to type 2 diabetes. Process Biochemistry, 2019, 82, 40-50.	3.7	12
175	Protective Effect of Probiotics Isolated from Traditional Fermented Tea Leaves (Miang) from Northern Thailand and Role of Synbiotics in Ameliorating Experimental Ulcerative Colitis in Mice. Nutrients, 2022, 14, 227.	4.1	12
176	Effect of apple pomace-based Trichoderma inoculants on seedling vigour in pea (Pisum sativum) germinated in potting soil. Process Biochemistry, 1999, 34, 731-735.	3.7	11
177	Initial screening studies on potential of high phenolic-linked plant clonal systems for nitrate removal in cold latitudes. Journal of Soils and Sediments, 2010, 10, 923-932.	3.0	11
178	Anti-Hyperglycemia Properties of Tea (Camellia sinensis) Bioactives Using In Vitro Assay Models and Influence of Extraction Time. Journal of Medicinal Food, 2011, 14, 1190-1197.	1.5	11
179	Oxidative stability of butter with added phenolics from <scp>L</scp> amiaceae herbs and <i>in vitro</i> evaluation of potential cytotoxicity of rosemary (<i><scp>R</scp>osmarinus officinalis</i>) Tj ETQq1	l 0. 284 314	4 rgBT /Overlo
180	Utilizing Gelatinized Starchy Waste from Rice Noodle Factory as Substrate for L(+)-Lactic Acid Production by Amylolytic Lactic Acid Bacterium Enterococcus faecium K-1. Applied Biochemistry and Biotechnology, 2020, 192, 353-366.	2.9	11

#	Article	IF	Citations
181	Bioactive compounds of loquat (Eriobotrya japonica Lindl.) cv. Golden Nugget and analysis of the in vitro functionality for hyperglycemia management., 2017, 44, 271-283.		11
182	Regulation of Benzyladenine-Induced in Vitro Shoot Organogenesis and Endogenous Proline in Melon (Cucumis meloL.) by Exogenous Proline, Ornithine, and Proline Analogues. Journal of Agricultural and Food Chemistry, 1998, 46, 2402-2406.	5.2	10
183	Identification of Polymeric Dye-Tolerant Oregano (Origanum vulgare) Clonal Lines by Quantifying Total Phenolics and Peroxidase Activity. Journal of Agricultural and Food Chemistry, 1998, 46, 4441-4446.	5.2	10
184	Reversion to hyperhydration by addition of antibiotics to remove Pseudomonas in unhyperhydrated oregano tissue cultures. Process Biochemistry, 1999, 34, 717-723.	3.7	10
185	Mobilization of primary metabolites and phenolics during natural fermentation in seeds of Pangium edule Reinw Process Biochemistry, 1999, 35, 197-204.	3.7	10
186	Sprouting and Solid-State Bioprocessing byRhizopus oligosporusIncrease theIn VitroAntibacterial Activity of Aqueous Soybean Extracts AgainstHelicobacter pylori. Food Biotechnology, 2004, 18, 229-249.	1.5	10
187	OVER-EXPRESSION OF PROLINE-LINKED ANTIOXIDANT PATHWAY AND MODULATION OF PHENOLIC METABOLITES IN LONG LIFE SPAN CLONAL LINE OF <i>ORIGANUM VULGARE </i> IN RESPONSE TO ULTRAVIOLET RADIATION. Journal of Food Biochemistry, 2009, 33, 649-673.	2.9	10
188	Phenolic bioactives from developmental stages of highbush blueberry (<i>Vaccinium corymbosum</i>) for hyperglycemia management using in vitro models. Canadian Journal of Plant Science, 2015, 95, 653-662.	0.9	10
189	Phenolic antioxidant-linked anti-hyperglycemic properties of rye cultivars grown under conventional and organic production systems. Journal of Cereal Science, 2017, 76, 108-115.	3.7	10
190	Lactic acid bacteria based fermentation strategy to improve phenolic bioactive-linked functional qualities of select chickpea (Cicer arietinum L.) varieties. NFS Journal, 2022, 27, 36-46.	4.3	10
191	Anti-diabetic potential of crude extracts of medicinal plants used as substitutes for <i>Swertia chirayita</i> using <i>in vitro</i> assays. Botanica Orientalis Journal of Plant Science, 0, 7, 48-55.	0.0	9
192	Response of oregano (Origanum vulgare L.) clonal lines to Pseudomonas sp. Z strain and polydye R-478 and implications for hyperhydricity prevention in tissue culture. Process Biochemistry, 2002, 38, 343-350.	3.7	9
193	ANTIOXIDANT ENZYME RESPONSE STUDIES IN H2O2-STRESSED PORCINE MUSCLE TISSUE FOLLOWING TREATMENT WITH FAVA BEAN SPROUT EXTRACT AND L-DOPA. Journal of Food Biochemistry, 2006, 30, 671-698.	2.9	9
194	Improving salinity resilience in <i>Swertia chirayita</i> clonal line with <i>Lactobacillus plantarum</i> . Canadian Journal of Plant Science, 2016, 96, 117-127.	0.9	9
195	Natural preservatives for superficial scald reduction and enhancement of protective phenolic-linked antioxidant responses in apple during post-harvest storage. Journal of Food Science and Technology, 2018, 55, 1767-1780.	2.8	9
196	Evaluation of phenolic bioactive-linked anti-hyperglycemic and Helicobacter pylori inhibitory activities of Asian Basil (Ocimum spp.) varieties. Journal of Herbal Medicine, 2020, 20, 100310.	2.0	9
197	Microbial dynamics-linked properties and functional metabolites during Miang fermentation using the filamentous fungi growth-based process. Food Bioscience, 2021, 41, 100998.	4.4	9
198	Improving phenolic bioactive-linked functional qualities of traditional cereal-based fermented food (Ogi) of Nigeria using compatible food synergies with underutilized edible plants. NFS Journal, 2022, 27, 1-12.	4.3	9

#	Article	IF	CITATIONS
199	Specific selection of embryogenic cells lines in Agrostis alba L. using the proline analog thioproline. Plant Science, 1991, 79, 259-263.	3.6	8
200	Production of antifungal metabolites by the ectomycorrhizal fungusPisolithus tinctorius strain SMF. Journal of Industrial Microbiology, 1991, 8, 29-35.	0.9	8
201	HEALTH-RELATED FUNCTIONALITY OF PHENOLIC-ENRICHED PEA SPROUTS IN RELATION TO DIABETES AND HYPERTENSION MANAGEMENT. Journal of Food Biochemistry, 2008, 32, 3-14.	2.9	8
202	Antioxidant Enzyme Response of Creeping Bentgrass Clonal Lines with Marine Peptide and Chitosan Oligosaccharide. Agronomy Journal, 2010, 102, 981-989.	1.8	8
203	INFLUENCE OF VARIETAL AND pH VARIATION ON ANTIHYPERGLYCEMIA AND ANTIHYPERTENSION PROPERTIES OF LONG-TERM STORED APPLES USING IN VITRO ASSAY MODELS. Journal of Food Biochemistry, 2012, 36, 479-493.	2.9	8
204	Comparison of Phenolic Contents and Scavenging Activities of Miang Extracts Derived from Filamentous and Non-Filamentous Fungi-Based Fermentation Processes. Antioxidants, 2021, 10, 1144.	5.1	8
205	Phenolics-Linked Antioxidant and Anti-hyperglycemic Properties of Edible Roselle (Hibiscus sabdariffa) Tj ETQq1 1 Systems, 2022, 6, .	0.784314 3.9	ł rgBT /Over 8
206	Enterococci as Dominant Xylose Utilizing Lactic Acid Bacteria in Eri Silkworm Midgut and the Potential Use of Enterococcus hirae as Probiotic for Eri Culture. Insects, 2022, 13, 136.	2.2	8
207	Transgenic melon (cucumis meloL.) and potential for expression of novel proteins important to food industry. Food Biotechnology, 1997, 11, 111-128.	1.5	7
208	Phenolic-Linked Antioxidant, anti-Diabetic, and anti-Hypertensive Potential of Wild and Cultivated <i>Swertia chirayita</i> (Roxb. ex Flem.) Karst. Using <i>in vitro</i> Assays. Journal of Herbs, Spices and Medicinal Plants, 2014, 20, 55-69.	1.1	7
209	Elicitation of Stress-Induced Phenolic Metabolites for Antimicrobial Applications against Foodborne Human Bacterial Pathogens. Antibiotics, 2021, 10, 109.	3.7	7
210	Candida albicans biofilm formation and growth optimization for functional studies using response surface methodology. Journal of Applied Microbiology, 2022, 132, 3277-3292.	3.1	7
211	Polymicrobial Biofilm Dynamics of Multidrug-Resistant Candida albicans and Ampicillin-Resistant Escherichia coli and Antimicrobial Inhibition by Aqueous Garlic Extract. Antibiotics, 2022, 11, 573.	3.7	7
212	Growth kinetics and phenolics production inGlycine Max cell suspension cultures. Applied Biochemistry and Biotechnology, 1989, 20-21, 825-843.	2.9	6
213	Control of Hyperhydricity in Anise (Pimpinella anisum) Tissue Culture byPseudomonasspp Journal of Herbs, Spices and Medicinal Plants, 1998, 6, 57-67.	1.1	6
214	Improved Salinity Resilience in Black Bean by Seed Elicitation Using Organic Compounds. Agronomy Journal, 2017, 109, 1991-2003.	1.8	6
215	Improvement of Enantiomeric I-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation, 2021, 7, 95.	3.0	6
216	Extracellular peroxidases as indicators of growth in plant cell suspension cultures. Applied Biochemistry and Biotechnology, 1990, 24-25, 213-221.	2.9	5

#	Article	IF	CITATIONS
217	Simulation of Somatic Embryogenesis in Anise (Pimpinella anisum) Using Fish Protein Hydrolysates and Proline. Journal of Herbs, Spices and Medicinal Plants, 1998, 5, 61-68.	1.1	5
218	Tissue Culture Selection for Phenolics and Rosmarinic Acid in Thyme. Journal of Herbs, Spices and Medicinal Plants, 2001, 8, 31-42.	1.1	5
219	Bioactive vegetables integrated into ethnic "Three Sisters Crops―garden targeting foods for type 2 diabetes-associated health disparities of American Indian communities. Journal of Ethnic Foods, 2017, 4, 163-171.	1.9	5
220	Improving Health Targeted Food Quality of Blackberry: Pear Fruit Synergy Using Lactic Acid Bacterial Fermentation. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	5
221	Improving Phenolic Bioactive-Linked Functional Qualities of Sweet Potatoes Using Beneficial Lactic Acid Bacteria-Based Biotransformation Strategy. Horticulturae, 2021, 7, 367.	2.8	5
222	Characterization of the Effect of Sprouting or Solid-State Bioprocessing by Dietary Fungus on the Antibacterial Activity of Soybean Extracts AgainstListeria monocytogenes. Food Biotechnology, 2005, 19, 121-136.	1.5	4
223	Functional Food Components for Preventing and Combating Type 2 Diabetes. ACS Symposium Series, 2012, , 345-374.	0.5	4
224	High throughput comparative assessment of biofilm formation of Candida glabrata on polystyrene material. Korean Journal of Chemical Engineering, 2022, 39, 1277-1286.	2.7	4
225	Phenolic Antimicrobials from Plants for Control of Bacterial Pathogens. Food Additives, 2005, , .	0.1	3
226	Stimulation of High Biomass, Rosmarinic Acid, and Total Phenolics in Tissue Cultures of Pennyroyal in Response toPseudomonas mucidolens. Journal of Herbs, Spices and Medicinal Plants, 2005, 11, 13-24.	1.1	3
227	Health Benefits of Berries for Potential Management of Hyperglycemia and Hypertension. ACS Symposium Series, 2010, , 121-137.	0.5	3
228	Improving antioxidant and antiâ€hyperglycemic activity in cereal and appleâ€based food formulations using bioactive ingredients from apple peel. Journal of Food Processing and Preservation, 2020, 44, e14609.	2.0	3
229	Improving Phenolic-Linked Antioxidant, Antihyperglycemic and Antibacterial Properties of Emmer and Conventional Wheat Using Beneficial Lactic Acid Bacteria. Applied Microbiology, 2021, 1, 270-288.	1.6	3
230	Kefir Culture-Mediated Fermentation to Improve Phenolic-Linked Antioxidant, Anti-Hyperglycemic and Human Gut Health Benefits in Sprouted Food Barley. Applied Microbiology, 2021, 1, 377-407.	1.6	3
231	Stimulation of Benzyladenine-Induced in vitro Shoot Organogensis from Cotyledons of Cucumis sativus L. by Proline and Abscisic Acid Plant Tissue Culture Letters, 1992, 9, 104-108.	0.1	3
232	Cold-Stress Response of Cool-Season Turfgrass. Books in Soils, Plants, and the Environment, 2007, , 507-530.	0.1	3
233	Partial Improvement of Vitrification and Acclimation of Oregano (Origanum vulgareL.) Tissue Cultures by Fish Protein Hydrolysates. Journal of Herbs, Spices and Medicinal Plants, 2000, 6, 29-38.	1.1	2
234	PARTIAL PURIFICATION OF A BASIC GUAIACIOL PEROXIDASE FROM FAVA BEAN (VICIA FABAL.): CHARACTERIZATION OF ENZYME STABILITY FOLLOWING ELICITOR TREATMENT. Food Biotechnology, 2001, 15, 99-111.	1.5	2

#	Article	IF	CITATIONS
235	A Hypothetical Model for Action of Soybean Isoflavonoids Against Cancer Involving a Shift to Proline-Linked Energy Metabolism Through Activation of the Pentose-Phosphate Pathway. Food Biotechnology, 2004, 18, 19-37.	1.5	2
236	Clonal Screening and Sprout Based Bioprocessing of Phenolic Phytochemicals for Functional Foods. Food Additives, 2005, , .	0.1	2
237	Improvement of Phenolic Antioxidant-linked Cancer Cell Cytotoxicity of Grape Cell Culture Elicited by Chitosan and Chemical Treatments. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1577-1584.	1.0	2
238	Using Biological Elicitation to Improve Type 2 Diabetes Targeted Food Quality of Stored Apple. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	2
239	Low Microbial Load Sprouts with Enhanced Antioxidants for Astronaut Diet. , 0, , .		1
240	ULTRAVIOLET PROTECTIVE PROPERTIES OF LATIN AMERICAN HERBS ON SACCHAROMYCES CEREVISIAE AND LIKELY MODE OF ACTION THROUGH THE PROLINE-LINKED PENTOSE PHOSPHATE PATHWAY: FOCUS ON THE YERBA MATE TEA (ILEX PARAGUARIENSIS). Journal of Food Biochemistry, 2012, 36, 322-333.	2.9	1
241	Diabetes as a Disease of Aging, and the Role of Oxidative Stress. , 2014, , 61-69.		1
242	Metabolic Mobilization Strategies to Enhance the Use of Plant-Based Dietary Antioxidants for the Management of Type 2 Diabetes. , 2014, , 289-296.		1
243	Targeted Screening and Improvement of the Medicinal Properties of Oregano and Rhodiola with Chitosan Oligosaccharide and Vitamin C Using in Vitro Assays for Hyperglycemia and Hypertension Linked to Type 2 Diabetes. Journal of Herbs, Spices and Medicinal Plants, 2017, 23, 347-362.	1.1	1
244	Metabolic and Microbiome Innovations for Improving Phenolic Bioactives for Health. ACS Symposium Series, 2018, , 261-281.	0.5	1
245	Amylase activity and L-phenylalanine overproduction from starch by an analog resistant mutant ofBacillus polymyxa. Applied Biochemistry and Biotechnology, 1988, 17, 347-355.	2.9	0
246	<i>In Vitro</i> Selection of High Phenolic and Rosmarinic Acid Clonal Lines of Oregano. Journal of Herbs, Spices and Medicinal Plants, 2007, 13, 45-55.	1.1	0
247	Optimized methodology for the extraction of free and bound phenolic acids from ChileanCristalinocorn (Zea maysL.) accession. CYTA - Journal of Food, 2016, , 1-8.	1.9	0
248	Food Biotechnology 30th Volume Reflections from the Editor in Chief. Food Biotechnology, 2016, 30, 231-232.	1.5	0
249	Rapid Screening of Natural Plant Extracts with Calcium Diacetate for Differential Effects Against Foodborne Pathogens and a Probiotic Bacterium. Foodborne Pathogens and Disease, 2017, 14, 719-727.	1.8	0
250	Biotechnology of Nonnutritive Sweeteners. Food Additives, 2006, , .	0.1	0
251	Clonal Screening and Sprout Based Bioprocessing of Phenolic Phytochemicals for Functional Foods. Food Additives, 2006, , .	0.1	0
252	Biochemical Markers for Antioxidant Functionality. Food Additives, 2006, , .	0.1	0

#	Article	IF	CITATIONS
253	Rhodiola extract inhibits adipocyte differentiation in 3T3‣1 cells. FASEB Journal, 2008, 22, 148.6.	0.5	O
254	Plant Clonal Systems as a Strategy for Nitrate Pollution Removal in Cold Latitudes. , 2010, , 75-77.		0