
Henri G Franquelim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588361/publications.pdf Version: 2024-02-01

HENRI C ERANQUELIM

#	Article	IF	CITATIONS
1	Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation. Journal of Neuroscience, 2012, 32, 11750-11762.	1.7	228
2	Molecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly. Cell, 2014, 156, 469-481.	13.5	206
3	Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials, 2012, 33, 8907-8916.	5.7	199
4	Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR. Journal of Biological Chemistry, 2010, 285, 27536-27544.	1.6	193
5	Membrane sculpting by curved DNA origami scaffolds. Nature Communications, 2018, 9, 811.	5.8	173
6	Decoding the Membrane Activity of the Cyclotide Kalata B1. Journal of Biological Chemistry, 2011, 286, 24231-24241.	1.6	155
7	Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 944-955.	1.4	144
8	Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles. Angewandte Chemie - International Edition, 2015, 54, 6501-6505.	7.2	107
9	Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 543-551.	1.7	76
10	Optical Control of Lipid Rafts with Photoswitchable Ceramides. Journal of the American Chemical Society, 2016, 138, 12981-12986.	6.6	74
11	DNA Nanostructures on Membranes as Tools for Synthetic Biology. Biophysical Journal, 2016, 110, 1698-1707.	0.2	73
12	Quantitative assessment of peptide–lipid interactions Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1999-2012.	1.4	64
13	The Antimicrobial Activity of Sub3 is Dependent on Membrane Binding and Cellâ€Penetrating Ability. ChemBioChem, 2013, 14, 2013-2022.	1.3	55
14	Synthetic cell division via membrane-transforming molecular assemblies. BMC Biology, 2019, 17, 43.	1.7	52
15	Sifuvirtide Screens Rigid Membrane Surfaces. Establishment of a Correlation between Efficacy and Membrane Domain Selectivity among HIV Fusion Inhibitor Peptides. Journal of the American Chemical Society, 2008, 130, 6215-6223.	6.6	51
16	Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers. Langmuir, 2018, 34, 14921-14931.	1.6	39
17	Reversible membrane deformations by straight DNA origami filaments. Soft Matter, 2021, 17, 276-287.	1.2	38
18	Unravelling the molecular basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1234-1243.	1.4	32

Henri G Franquelim

#	Article	IF	CITATIONS
19	Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes. Journal Physics D: Applied Physics, 2016, 49, 194001.	1.3	31
20	Dps from <i>Deinococcus radiodurans</i> : oligomeric forms of Dps1 with distinct cellular functions and Dps2 involved in metal storage. FEBS Journal, 2015, 282, 4307-4327.	2.2	30
21	Features of MOG required for recognition by patients with MOG antibody-associated disorders. Brain, 2021, 144, 2375-2389.	3.7	27
22	Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides. ELife, 2019, 8, .	2.8	27
23	Hydration Layer of Only a Few Molecules Controls Lipid Mobility in Biomimetic Membranes. Journal of the American Chemical Society, 2021, 143, 14551-14562.	6.6	24
24	DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity. Nano Letters, 2021, 21, 8634-8641.	4.5	22
25	Anti-HIV-1 antibodies 2F5 and 4E10 interact differently with lipids to bind their epitopes. Aids, 2011, 25, 419-428.	1.0	20
26	Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy. Biochemical and Biophysical Research Communications, 2012, 420, 676-679.	1.0	19
27	Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins: Structure, Function and Bioinformatics, 2015, 83, 2039-2051.	1.5	18
28	Decoding distinct membrane interactions of HIV-1 fusion inhibitors using a combined atomic force and fluorescence microscopy approach. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1777-1785.	1.4	15
29	Shaping Giant Membrane Vesicles in 3Dâ€Printed Protein Hydrogel Cages. Small, 2020, 16, e1906259.	5.2	12
30	3D printed protein-based robotic structures actuated by molecular motor assemblies. Nature Materials, 2022, 21, 703-709.	13.3	12
31	Molecular interaction studies of peptides using steadyâ€state fluorescence intensity. Static (de)quenching revisited. Journal of Peptide Science, 2008, 14, 401-406.	0.8	11
32	Membrane-coated 3D architectures for bottom-up synthetic biology. Soft Matter, 2021, 17, 5456-5466.	1.2	11
33	Nonâ€Equilibrium Largeâ€Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angewandte Chemie - International Edition, 2021, 60, 6496-6502.	7.2	10
34	N-Terminal AH2 segment of protein NS4B from hepatitis C virus. Binding to and interaction with model biomembranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1938-1952.	1.4	9
35	Design of Sealable Custom-Shaped Cell Mimicries Based on Self-Assembled Monolayers on CYTOP Polymer. ACS Applied Materials & Interfaces, 2019, 11, 21372-21380.	4.0	8
36	Cationic liposomes are possible drug-delivery systems for HIV fusion inhibitor sifuvirtide. Soft Matter, 2011, 7, 11089.	1.2	6

Henri G Franquelim

#	Article	IF	CITATIONS
37	Revolving around constriction by ESCRT-III. Nature Cell Biology, 2017, 19, 754-756.	4.6	6
38	Membraneâ€Mediated Selfâ€Organization of Rod‣ike DNA Origami on Supported Lipid Bilayers. Advanced Materials Interfaces, 2021, 8, 2101094.	1.9	4
39	Unraveling the Molecular Basis of the Selectivity of the HIV-1 Fusion Inhibitor Sifuvirtide Towards Phosphatidylcholine-Rich Rigid Membranes. Biophysical Journal, 2010, 98, 279a.	0.2	0
40	Decoding Distinct Membrane Interactions of HIV-1 Inhibitors Enfuvirtide and T-1249 using Atomic Force Microscopy Combined with Fluorescence Methodologies. Biophysical Journal, 2012, 102, 490a.	0.2	0
41	Synthetic Membrane Curvature-Inducing DNA Origami Scaffolds. Biophysical Journal, 2014, 106, 617a.	0.2	0
42	Steps for Constructing Synthetic Membrane Curvature-Inducing DNA Origami Scaffolds. Biophysical Journal, 2016, 110, 199a.	0.2	0
43	3D Printing: Shaping Giant Membrane Vesicles in 3Dâ€Printed Protein Hydrogel Cages (Small 27/2020). Small, 2020, 16, 2070151.	5.2	0
44	Nonâ€Equilibrium Largeâ€Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angewandte Chemie, 2021, 133, 6570-6576.	1.6	0
45	Probing Biomolecular Interactions by a Pattern-Forming Peptide–Conjugate Sensor. Bioconjugate Chemistry, 2021, 32, 172-181.	1.8	0