

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588360/publications.pdf Version: 2024-02-01

CLANER

#	Article	IF	CITATIONS
1	Rationale and decision rules behind the ECETOC NanoApp to support registration of sets of similar nanoforms within REACH. Nanotoxicology, 2021, 15, 145-166.	1.6	18
2	Creating sets of similar nanoforms with the ECETOC NanoApp: real-life case studies. Nanotoxicology, 2021, 15, 1016-1034.	1.6	11
3	Short-term oral administration of non-porous and mesoporous silica did not induce local or systemic toxicity in mice. Nanotoxicology, 2020, 14, 1324-1341.	1.6	22
4	In vitro assessment of CeO2 nanoparticles effects on intestinal microvilli morphology. Toxicology in Vitro, 2019, 59, 70-77.	1.1	5
5	Quality evaluation of human and environmental toxicity studies performed with nanomaterials – the GUIDEnano approach. Environmental Science: Nano, 2018, 5, 381-397.	2.2	48
6	Iron oxide nanoparticle toxicity on human cell lines, aquatic and soil organisms and interactions with metal pollutants. Toxicology Letters, 2018, 295, S209-S210.	0.4	3
7	Development of a systematic method to assess similarity between nanomaterials for human hazard evaluation purposes – lessons learnt. Nanotoxicology, 2018, 12, 652-676.	1.6	21
8	The Life Cycle of Engineered Nanoparticles. Advances in Experimental Medicine and Biology, 2017, 947, 41-69.	0.8	10
9	Contribution of M-cells and other experimental variables in the translocation of TiO2 nanoparticles across in vitro intestinal models. NanoImpact, 2017, 5, 51-60.	2.4	22
10	Acute ecotoxicity of coated colloidal goethite nanoparticles on Daphnia magna: Evaluating the influence of exposure approaches. Science of the Total Environment, 2017, 609, 172-179.	3.9	9
11	Towards a nanospecific approach for risk assessment. Regulatory Toxicology and Pharmacology, 2016, 80, 46-59.	1.3	109
12	Influence of Nanomaterial Compatibilization Strategies on Polyamide Nanocomposites Properties and Nanomaterial Release during the Use Phase. Environmental Science & Technology, 2016, 50, 2584-2594.	4.6	21
13	<i>In vitro</i> toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers. Nanotoxicology, 2014, 8, 279-294.	1.6	46
14	Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicology Letters, 2014, 228, 103-110.	0.4	87
15	Engineered Nanoscale Food Ingredients: Evaluation of Current Knowledge on Material Characteristics Relevant to Uptake from the Gastrointestinal Tract. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 730-744.	5.9	85
16	Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites. Journal of Physics: Conference Series, 2013, 429, 012048.	0.3	22
17	The intestinal antiâ€inflammatory effect of dersalazine sodium is related to a downâ€regulation in ILâ€17 production in experimental models of rodent colitis. British Journal of Pharmacology, 2012, 165, 729-740.	2.7	31
18	A semi-quantitative model for risk appreciation and risk weighing. Food and Chemical Toxicology, 2009, 47, 2941-2950.	1.8	14

G JANER

#	Article	IF	CITATIONS
19	Oleoyl-estrone affects lipid metabolism in adrenalectomized rats treated with corticosterone through modulation of SREBP1c expression. Journal of Steroid Biochemistry and Molecular Biology, 2009, 117, 15-22.	1.2	6
20	A retrospective analysis of developmental toxicity studies in rat and rabbit: What is the added value of the rabbit as an additional test species?. Regulatory Toxicology and Pharmacology, 2008, 50, 206-217.	1.3	44
21	A retrospective analysis of the two-generation study, author response to letter to the editor. Reproductive Toxicology, 2008, 25, 406-407.	1.3	1
22	Use of the rat postimplantation embryo culture to assess the embryotoxic potency within a chemical category and to identify toxic metabolites. Toxicology in Vitro, 2008, 22, 1797-1805.	1.1	25
23	Quantitative Extrapolation of In Vitro Whole Embryo Culture Embryotoxicity Data to Developmental Toxicity In Vivo Using the Benchmark Dose Approach. Toxicological Sciences, 2008, 101, 91-100.	1.4	50
24	Promoting Physical Activity and a Healthy Diet among Working Women. , 2008, , 319-332.		1
25	Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 146, 368-374.	1.3	31
26	A retrospective analysis of the two-generation study: What is the added value of the second generation?. Reproductive Toxicology, 2007, 24, 97-102.	1.3	62
27	A retrospective analysis of the added value of the rat two-generation reproductive toxicity study versus the rat subchronic toxicity study. Reproductive Toxicology, 2007, 24, 103-113.	1.3	22
28	Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates. Ecotoxicology, 2007, 16, 145-160.	1.1	153
29	Steroid levels and steroid metabolism in the Mussel Mytilus edulis: The modulating effect of dispersed crude oil and alkylphenols. Aquatic Toxicology, 2006, 78, S65-S72.	1.9	48
30	Endocrine disruptors in marine organisms: Approaches and perspectives. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 143, 303-315.	1.3	166
31	The effect of organotin compounds on gender specific androstenedione metabolism in the freshwater ramshorn snail Marisa cornuarietis. Journal of Steroid Biochemistry and Molecular Biology, 2006, 99, 147-156.	1.2	12
32	Sexual dimorphism in esterified steroid levels in the gastropod Marisa cornuarietis: The effect of xenoandrogenic compounds. Steroids, 2006, 71, 435-444.	0.8	61
33	COMPRENDO: Focus and Approach. Environmental Health Perspectives, 2006, 114, 98-100.	2.8	14
34	Androgen Metabolism in Invertebrates and Its Modulation by Xenoandrogens: A Comparative Study. Annals of the New York Academy of Sciences, 2005, 1040, 354-356.	1.8	12
35	A comparative study on androgen metabolism in three invertebrate species. General and Comparative Endocrinology, 2005, 143, 211-221.	0.8	52
36	Testosterone conjugating activities in invertebrates: are they targets for endocrine disruptors?. Aquatic Toxicology, 2005, 71, 273-282.	1.9	85

G JANER

#	Article	IF	CITATIONS
37	Effects of 17β-estradiol exposure in the mussel Mytilus galloprovincialis: A possible regulating role for steroid acyltransferases. Aquatic Toxicology, 2005, 75, 32-42.	1.9	77
38	Sulfatase activity in the oyster Crassostrea virginica: Its potential interference with sulfotransferase determination. Aquatic Toxicology, 2005, 74, 92-95.	1.9	11
39	INTERACTION OF TRIBUTYLTIN WITH HEPATIC CYTOCHROME P450 AND URIDINE DIPHOSPHATE–GLUCURONOSYL TRANSFERASE SYSTEMS OF FISH: IN VITRO STUDIES. Environmental Toxicology and Chemistry, 2004, 23, 990.	2.2	28
40	Esterification of vertebrate-type steroids in the Eastern oyster (Crassostrea virginica). Steroids, 2004, 69, 129-136.	0.8	49
41	Effects of 17β-estradiol exposure in the mussel Mytilus galloprovincialis. Marine Environmental Research, 2004, 58, 443-446.	1.1	27
42	Esterification of vertebrate-like steroids in the eastern oyster (Crassostrea virginica). Marine Environmental Research, 2004, 58, 481-484.	1.1	19
43	Social context for workplace health promotion: feasibility considerations in Costa Rica, Finland, Germany, Spain and Sweden. Health Promotion International, 2003, 18, 115-126.	0.9	23
44	Assessment of Feasibility of Workplace Health Promotion. Preventive Medicine, 2002, 35, 232-240.	1.6	9
45	Health promotion trials at worksites and risk factors for cancer. Scandinavian Journal of Work, Environment and Health, 2002, 28, 141-157.	1.7	56