
Phyllis Whittlesey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5883063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 131-186.	8.1	439
2	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
3	Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 2019, 576, 228-231.	27.8	311
4	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	7.7	166
5	The Solar Probe Cup on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 43.	7.7	154
6	Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade. Astrophysical Journal, Supplement Series, 2020, 246, 39.	7.7	152
7	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	7.7	115
8	The Solar Probe ANalyzers—Electrons on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 74.	7.7	114
9	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
10	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	7.7	100
11	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	7.7	99
12	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	7.7	86
13	Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma. Astrophysical Journal, Supplement Series, 2020, 246, 68.	7.7	83
14	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	7.7	67
15	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24.	7.7	66
16	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	7.7	65
17	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	7.7	62
18	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67	7.7	61

#	Article	IF	CITATIONS
19	Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 26.	7.7	57
20	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	7.7	56
21	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	7.7	56
22	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> . Astrophysical Journal, Supplement Series, 2020, 246, 62.	7.7	55
23	Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations. Astrophysical Journal, Supplement Series, 2020, 246, 38.	7.7	53
24	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
25	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	7.7	51
26	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	7.7	50
27	Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophysical Journal, 2021, 919, 96.	4.5	50
28	Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophysical Journal Letters, 2021, 912, L21.	8.3	49
29	Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R _⊙ Radii. Astrophysical Journal Letters, 2020, 891, L20.	8.3	46
30	Exploring Solar Wind Origins and Connecting Plasma Flows from the <i>Parker Solar Probe</i> to 1 au: Nonspherical Source Surface and Alfvénic Fluctuations. Astrophysical Journal, Supplement Series, 2020, 246, 54.	7.7	46
31	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	7.7	45
32	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	7.7	43
33	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
34	Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion—A Partial-variance-of-increments Analysis. Astrophysical Journal, Supplement Series, 2020, 246, 31.	7.7	37
35	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	7.7	36
36	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â^1⁄40.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	7.7	35

#	Article	IF	CITATIONS
37	Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 49.	7.7	35
38	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	7.7	34
39	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	4.5	34
40	Electron heat flux in the near-Sun environment. Astronomy and Astrophysics, 2021, 650, A15.	5.1	32
41	Energetic Particle Increases Associated with Stream Interaction Regions. Astrophysical Journal, Supplement Series, 2020, 246, 20.	7.7	31
42	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	7.7	30
43	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	7.8	29
44	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	7.7	29
45	Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	5.1	29
46	Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophysical Journal Letters, 2022, 926, L1.	8.3	28
47	Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 35.	7.7	27
48	Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A5.	5.1	27
49	Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data. Astrophysical Journal, Supplement Series, 2020, 246, 46.	7.7	26
50	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	8.3	25
51	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	7.7	23
52	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	5.1	23
53	Inferred Linear Stability of Parker Solar Probe Observations Using One- and Two-component Proton Distributions. Astrophysical Journal, 2021, 909, 7.	4.5	22
54	Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A9.	5.1	22

#	Article	IF	CITATIONS
55	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	4.5	22
56	CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process. Astrophysical Journal, Supplement Series, 2020, 246, 59.	7.7	21
57	Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 33.	7.7	21
58	Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux. Astrophysical Journal Letters, 2022, 924, L33.	8.3	19
59	Evidence of Subprotonâ€Scale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	4.0	18
60	MHD Mode Composition in the Inner Heliosphere from the <i>Parker Solar Probe</i> 's First Perihelion. Astrophysical Journal, Supplement Series, 2020, 246, 71.	7.7	17
61	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	4.0	16
62	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	4.0	16
63	Strong Perpendicular Velocity-space Diffusion in Proton Beams Observed by Parker Solar Probe. Astrophysical Journal, 2022, 924, 112.	4.5	16
64	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	4.5	16
65	Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Nearâ€Sun Heliospheric Current Sheet. Geophysical Research Letters, 2022, 49, .	4.0	15
66	Radial Evolution of Thermal and Suprathermal Electron Populations in the Slow Solar Wind from 0.13 to 0.5 au: Parker Solar Probe Observations. Astrophysical Journal, 2022, 931, 118.	4.5	15
67	The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au. Astrophysical Journal, 2020, 897, 134.	4.5	14
68	Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model. Astrophysical Journal, Supplement Series, 2020, 246, 40.	7.7	14
69	The Sunward Electron Deficit: A Telltale Sign of the Sun's Electric Potential. Astrophysical Journal, 2021, 916, 16.	4.5	14
70	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	4.5	14
71	Wave-particle energy transfer directly observed in an ion cyclotron wave. Astronomy and Astrophysics, 2021, 650, A10.	5.1	12
72	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	5.1	12

#	Article	IF	CITATIONS
73	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	5.1	11
74	Kineticâ€Scale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	4.0	11
75	The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2020, 902, L4.	8.3	11
76	Magnetic increases with central current sheets: observations with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A11.	5.1	8
77	Density and Velocity Fluctuations of Alpha Particles in Magnetic Switchbacks. Astrophysical Journal, 2022, 933, 43.	4.5	6
78	Correcting Parker Solar Probe Electron Measurements for Spacecraft Magnetic and Electric Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 7369-7384.	2.4	3
79	PSP/IS⊙IS Observation of a Solar Energetic Particle Event Associated with a Streamer Blowout Coronal Mass Ejection during Encounter 6. Astrophysical Journal, 2022, 925, 212.	4.5	3
80	Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7. Astrophysical Journal, 2022, 927, 62.	4.5	3