
John Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5882871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced d-serine levels drive enhanced non-ionotropic NMDA receptor signaling and destabilization of dendritic spines in a mouse model for studying schizophrenia. Neurobiology of Disease, 2022, 170, 105772.	4.4	8
2	Increased excitation-inhibition balance and loss of GABAergic synapses in the serine racemase knockout model of NMDA receptor hypofunction. Journal of Neurophysiology, 2021, 126, 11-27.	1.8	13
3	Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the <i>Ube3a</i> Deletion Rat Model of Angelman Syndrome. Journal of Neuroscience, 2021, 41, 8801-8814.	3.6	13
4	The Role of Glutamate in Language and Language Disorders - Evidence from ERP and Pharmacologic Studies. Neuroscience and Biobehavioral Reviews, 2020, 119, 217-241.	6.1	12
5	Postsynaptic Serine Racemase Regulates NMDA Receptor Function. Journal of Neuroscience, 2020, 40, 9564-9575.	3.6	29
6	Metaplasticity contributes to memory formation in the hippocampus. Neuropsychopharmacology, 2019, 44, 408-414.	5.4	24
7	NMDAR-Activated PP1 Dephosphorylates GluN2B to Modulate NMDAR Synaptic Content. Cell Reports, 2019, 28, 332-341.e5.	6.4	22
8	Sestd1 Encodes a Developmentally Dynamic Synapse Protein That Complexes With BCR Rac1-GAP to Regulate Forebrain Dendrite, Spine and Synapse Formation. Cerebral Cortex, 2019, 29, 505-516.	2.9	7
9	Long-Term Depression Is Independent of GluN2 Subunit Composition. Journal of Neuroscience, 2018, 38, 4462-4470.	3.6	28
10	Excitotoxic superoxide production and neuronal death require both ionotropic and non-ionotropic NMDA receptor signaling. Scientific Reports, 2018, 8, 17522.	3.3	30
11	Incomplete block of NMDA receptors by intracellular MK-801. Neuropharmacology, 2018, 143, 122-129.	4.1	6
12	Psychedelics Promote Structural and Functional Neural Plasticity. Cell Reports, 2018, 23, 3170-3182.	6.4	566
13	Non-ionotropic signaling by the NMDA receptor: controversy and opportunity. F1000Research, 2016, 5, 1010.	1.6	23
14	Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage. Journal of Neuroscience, 2015, 35, 12303-12308.	3.6	119
15	Activated CaMKII Couples GluN2B and Casein Kinase 2 to Control Synaptic NMDA Receptors. Cell Reports, 2013, 3, 607-614.	6.4	100
16	Parkinsonism and Rabbit Syndrome After Discontinuation of Low-Dose Ziprasidone and Concomitant Initiation of Sertraline. Journal of Clinical Psychopharmacology, 2012, 32, 142-143.	1.4	4
17	Thinking Outside the Synapse: Glycine at Extrasynaptic NMDA Receptors. Cell, 2012, 150, 455-456.	28.9	9
18	SAP102 Mediates Synaptic Clearance of NMDA Receptors. Cell Reports, 2012, 2, 1120-1128.	6.4	67

John Gray

#	Article	IF	CITATIONS
19	Distinct Modes of AMPA Receptor Suppression at Developing Synapses by GluN2A and GluN2B: Single-Cell NMDA Receptor Subunit Deletion InÂVivo. Neuron, 2011, 71, 1085-1101.	8.1	241
20	Potentiation of Synaptic AMPA Receptors Induced by the Deletion of NMDA Receptors Requires the GluA2 Subunit. Journal of Neurophysiology, 2011, 105, 923-928.	1.8	18
21	Genetic analysis of neuronal ionotropic glutamate receptor subunits. Journal of Physiology, 2011, 589, 4095-4101.	2.9	31
22	Metabolic Control of Vesicular Glutamate Transport and Release. Neuron, 2010, 68, 99-112.	8.1	331
23	The Expanded Biology of Serotonin. Annual Review of Medicine, 2009, 60, 355-366.	12.2	1,451
24	Structure and Function of the Third Intracellular Loop of the 5-Hydroxytryptamine2A Receptor: The Third Intracellular Loop Is α-Helical and Binds Purified Arrestins. Journal of Neurochemistry, 2008, 72, 2206-2214.	3.9	89
25	Molecular Targets for Treating Cognitive Dysfunction in Schizophrenia. Schizophrenia Bulletin, 2007, 33, 1100-1119.	4.3	205
26	The pipeline and future of drug development in schizophrenia. Molecular Psychiatry, 2007, 12, 904-922.	7.9	173
27	Developing selectively nonselective drugs for treating CNS disorders. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 413-419.	0.5	4
28	The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience, 2003, 122, 907-920.	2.3	71
29	Identification of Two Serine Residues Essential for Agonist-Induced 5-HT2AReceptor Desensitizationâ€. Biochemistry, 2003, 42, 10853-10862.	2.5	39
30	The Interaction of a Constitutively Active Arrestin with the Arrestin-Insensitive 5-HT2AReceptor Induces Agonist-Independent Internalization. Molecular Pharmacology, 2003, 63, 961-972.	2.3	55
31	A Direct Interaction of PSD-95 with 5-HT2A Serotonin Receptors Regulates Receptor Trafficking and Signal Transduction. Journal of Biological Chemistry, 2003, 278, 21901-21908.	3.4	152
32	CELL BIOLOGY: A Last GASP for GPCRs?. Science, 2002, 297, 529-531.	12.6	32
33	Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists. Brain Research Bulletin, 2001, 56, 441-451.	3.0	262
34	Cell-Type Specific Effects of Endocytosis Inhibitors on 5-Hydroxytryptamine _{2A} Receptor Desensitization and Resensitization Reveal an Arrestin-, GRK2-, and GRK5-Independent Mode of Regulation in Human Embryonic Kidney 293 Cells. Molecular Pharmacology, 2001, 60, 1020-1030.	2.3	88
35	The Dynamin-dependent, Arrestin-independent Internalization of 5-Hydroxytryptamine 2A (5-HT2A) Serotonin Receptors Reveals Differential Sorting of Arrestins and 5-HT2A Receptors during Endocytosis. Journal of Biological Chemistry, 2001, 276, 8269-8277.	3.4	144
36	NMDAR-Activated PP1 Dephosphorylates GluN2B to Modulate NMDAR-Plasticity. SSRN Electronic Journal, 0, , .	0.4	0