
Wim J H Hagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588287/publications.pdf Version: 2024-02-01

WIM LH HACEN

#	Article	IF	CITATIONS
1	New tools for automated high-resolution cryo-EM structure determination in RELION-3. ELife, 2018, 7, .	6.0	3,965
2	Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. Journal of Structural Biology, 2017, 197, 191-198.	2.8	556
3	In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 2020, 370, 203-208.	12.6	531
4	An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science, 2016, 353, 506-508.	12.6	375
5	Software tools for automated transmission electron microscopy. Nature Methods, 2019, 16, 471-477.	19.0	367
6	In situ structural analysis of the human nuclear pore complex. Nature, 2015, 526, 140-143.	27.8	361
7	Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold. Cell, 2013, 155, 1233-1243.	28.9	321
8	Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 2016, 352, 363-365.	12.6	284
9	Structure of the immature HIV-1 capsid in intact virus particles at 8.8ÂÃ resolution. Nature, 2015, 517, 505-508.	27.8	277
10	The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science, 2016, 354, 1434-1437.	12.6	229
11	In-cell architecture of an actively transcribing-translating expressome. Science, 2020, 369, 554-557.	12.6	192
12	The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold. Cell Reports, 2015, 11, 748-758.	6.4	190
13	Molecular structures of unbound and transcribing RNA polymerase III. Nature, 2015, 528, 231-236.	27.8	167
14	A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science, 2015, 349, 195-198.	12.6	159
15	In-cell architecture of the nuclear pore and snapshots of its turnover. Nature, 2020, 586, 796-800.	27.8	139
16	Al-based structure prediction empowers integrative structural analysis of human nuclear pores. Science, 2022, 376, .	12.6	136
17	Capturing protein communities by structural proteomics in a thermophilic eukaryote. Molecular Systems Biology, 2017, 13, 936.	7.2	108
18	9Ã structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. ELife, 2017, 6, .	6.0	103

Wim J H Hagen

#	Article	IF	CITATIONS
19	Molecular mechanism of promoter opening by RNA polymerase III. Nature, 2018, 553, 295-300.	27.8	101
20	Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8233-8238.	7.1	98
21	Determination of protein structure at 8.5 Ã resolution using cryo-electron tomography and sub-tomogram averaging. Journal of Structural Biology, 2013, 184, 394-400.	2.8	85
22	Molecular Structures of Transcribing RNA Polymerase I. Molecular Cell, 2016, 64, 1135-1143.	9.7	85
23	Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nature Microbiology, 2017, 2, 17059.	13.3	85
24	Seeing tobacco mosaic virus through direct electron detectors. Journal of Structural Biology, 2015, 189, 87-97.	2.8	82
25	An Organized Co-assembly of Clathrin Adaptors Is Essential for Endocytosis. Developmental Cell, 2015, 33, 150-162.	7.0	75
26	Structural basis of p62/SQSTM1 helical filaments and their role in cellular cargo uptake. Nature Communications, 2020, 11, 440.	12.8	71
27	The dynamic conformational landscape of Î ³ -secretase. Journal of Cell Science, 2015, 128, 589-98.	2.0	63
28	The Structure of Immature Virus-Like Rous Sarcoma Virus Gag Particles Reveals a Structural Role for the p10 Domain in Assembly. Journal of Virology, 2015, 89, 10294-10302.	3.4	61
29	Structural insights into transcription initiation by yeast RNA polymerase I. EMBO Journal, 2017, 36, 2698-2709.	7.8	58
30	Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nature Communications, 2020, 11, 876.	12.8	49
31	<scp>SNARE</scp> and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calciumâ€triggered fusion. EMBO Reports, 2014, 15, 308-314.	4.5	46
32	Combining high throughput and high quality for cryo-electron microscopy data collection. Acta Crystallographica Section D: Structural Biology, 2020, 76, 724-728.	2.3	42
33	Structural basis for RNA polymerase III transcription repression by Maf1. Nature Structural and Molecular Biology, 2020, 27, 229-232.	8.2	37
34	Open membranes are the precursors for assembly of large DNA viruses. Cellular Microbiology, 2013, 15, n/a-n/a.	2.1	31
35	Higherâ€order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle. EMBO Reports, 2016, 17, 1044-1060.	4.5	26
36	Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166.	7.1	21

Wim J H Hagen

#	Article	IF	CITATIONS
37	Exploring high-resolution cryo-ET and subtomogram averaging capabilities of contemporary DEDs. Journal of Structural Biology, 2022, 214, 107852.	2.8	18
38	Defocus-dependent Thon-ring fading. Ultramicroscopy, 2021, 222, 113213.	1.9	11
39	TEM bright field imaging of thick specimens: nodes in Thon ring patterns. Ultramicroscopy, 2020, 216, 113023.	1.9	10
40	Strategies for Optimization of Cryogenic Electron Tomography Data Acquisition. Journal of Visualized Experiments, 2021, , .	0.3	4
41	Automated cryo electron tomography and sub-tomogram averaging with the FEI Volta phase plate. Microscopy and Microanalysis, 2015, 21, 1833-1834.	0.4	0
42	Location and Identification of Macromolecular Complexes within Cellular Environments by High-Resolution Template Matching. Biophysical Journal, 2020, 118, 3a.	0.5	0