Dominico Antonio Guillén SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5882820/publications.pdf

Version: 2024-02-01

Dominico Antonio Guillén

#	Article	IF	CITATIONS
1	Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System. Molecules, 2022, 27, 365.	1.7	15
2	A Theoretical Approximation of the Accelerating Effects of Ultrasound about the Extraction of Phenolic Compounds from Wood by Wine Spirits. Foods, 2022, 11, 517.	1.9	4
3	Influence of alcoholic strength on the characteristics of Brandy de Jerez aged in Sherry Casks®. Journal of Food Composition and Analysis, 2022, 111, 104618.	1.9	8
4	Colour evolution kinetics study of spirits in their ageing process in wood casks. Food Control, 2021, 119, 107468.	2.8	10
5	Chemical content and sensory changes of Oloroso Sherry wine when aged with four different wood types. LWT - Food Science and Technology, 2021, 140, 110706.	2.5	11
6	Comparative Evaluation of Brandy de Jerez Aged in American Oak Barrels with Different Times of Use. Foods, 2021, 10, 288.	1.9	24
7	Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential. Biomolecules, 2021, 11, 227.	1.8	13
8	Aroma of Sherry Products: A Review. Foods, 2021, 10, 753.	1.9	26
9	HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter-Current Chromatography. Foods, 2021, 10, 131.	1.9	9
10	Characterization of the Aromatic and Phenolic Profile of Five Different Wood Chips Used for Ageing Spirits and Wines. Foods, 2020, 9, 1613.	1.9	20
11	Analytical Characterization and Sensory Analysis of Distillates of Different Varieties of Grapes Aged by an Accelerated Method. Foods, 2020, 9, 277.	1.9	15
12	Use of Alternative Wood for the Ageing of Brandy de Jerez. Foods, 2020, 9, 250.	1.9	21
13	Effect of the type of wood used for ageing on the volatile composition of Pedro Ximénez sweet wine. Journal of the Science of Food and Agriculture, 2020, 100, 2512-2521.	1.7	14
14	Discriminant ability of phenolic compounds and short chain organic acids profiles in the determination of quality parameters of Brandy de Jerez. Food Chemistry, 2019, 286, 275-281.	4.2	15
15	Determination of Antioxidant Activity of Brandy and Other Aged Beverages by Electrochemical and Photochemiluminescence Methods. Food Analytical Methods, 2017, 10, 1045-1053.	1.3	2
16	Study of a laboratory-scaled new method for the accelerated continuous ageing of wine spirits by applying ultrasound energy. Ultrasonics Sonochemistry, 2017, 36, 226-235.	3.8	39
17	Phenolic characterization of minor red grape varieties grown in Castilla-La Mancha region in different vinification stages. European Food Research and Technology, 2015, 240, 595-607.	1.6	14
18	Development of an accelerated aging method for Brandy. LWT - Food Science and Technology, 2014, 59, 108-114.	2.5	32

Dominico Antonio Guillén

#	Article	IF	CITATIONS
19	Evolution of the colour, antioxidant activity and polyphenols in unusually aged Sherry wines. Food Chemistry, 2012, 133, 271-276.	4.2	21
20	Analytical characterisation of a Brandy de Jerez during its ageing. European Food Research and Technology, 2011, 232, 813-819.	1.6	21
21	Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food and Bioproducts Processing, 2010, 88, 247-252.	1.8	34
22	Phenolic Compounds and Furanic Derivatives in the Characterization and Quality Control of <i>Brandy de Jerez</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 990-997.	2.4	25
23	Development and validation of UPLC for the determination of phenolic compounds and furanic derivatives in <i>Brandy de Jerez</i> . Journal of Separation Science, 2009, 32, 1782-1790.	1.3	65
24	Antioxidant activity of Brandy de Jerez and other aged distillates, and correlation with their polyphenolic content. Food Chemistry, 2009, 116, 29-33.	4.2	50
25	Validation of two analytical methods for the determination of ochratoxin A by reversed-phased high-performance liquid chromatography coupled to fluorescence detection in musts and sweet wines from Andalusia. Analytica Chimica Acta, 2006, 566, 117-121.	2.6	77
26	Sugar Contents of Brandy de Jerez during Its Aging. Journal of Agricultural and Food Chemistry, 2005, 53, 1058-1064.	2.4	18
27	Determination of the Age of Sherry Wines by Regression Techniques Using Routine Parameters and Phenolic and Volatile Compounds. Journal of Agricultural and Food Chemistry, 2005, 53, 2412-2417.	2.4	30
28	Optimisation of stir bar sorptive extraction for the analysis of volatile phenols in wines. Journal of Chromatography A, 2004, 1025, 263-267.	1.8	102
29	Study of the antioxidant power of brandies and vinegars derived from Sherry wines and correlation with their content in polyphenols. Food Research International, 2004, 37, 715-721.	2.9	99
30	Development of an electrochemical method for the determination of antioxidant activity. Application to grape-derived products. European Food Research and Technology, 2003, 216, 445-448.	1.6	23
31	Study of the polyphenol content of red and white grape varieties by liquid chromatography–mass spectrometry and its relationship to antioxidant power1. Journal of Chromatography A, 2003, 1012, 31-38.	1.8	134
32	Determination of Antioxidant Power of Red and White Wines by a New Electrochemical Method and Its Correlation with Polyphenolic Content. Journal of Agricultural and Food Chemistry, 2002, 50, 3112-3115.	2.4	110
33	Determination of Antioxidant Activity of Wine Byproducts and Its Correlation with Polyphenolic Content. Journal of Agricultural and Food Chemistry, 2002, 50, 5832-5836.	2.4	236
34	Determination of volatile phenols in fino sherry wines. Analytica Chimica Acta, 2002, 458, 95-102.	2.6	48
35	Automated solid-phase extraction for sample preparation followed by high-performance liquid chromatography with diode array and mass spectrometric detection for the analysis of resveratrol derivatives in wine. Journal of Chromatography A, 2001, 918, 303-310.	1.8	59
36	Solid-Phase Extraction for Sample Preparation, in the HPLC Analysis of Polyphenolic Compounds in "Fino―Sherry Wine. Journal of Agricultural and Food Chemistry, 1997, 45, 403-406.	2.4	33

#	Article	IF	CITATIONS
37	Analysis of low molecular mass phenolic compounds, furfural and 5-hydroxymethylfurfural in Brandy de Jerez by high-performance liquid chromatography-diode array detection with direct injection. Journal of Chromatography A, 1996, 724, 125-129.	1.8	26
38	Automation of sample preparation as a preliminary stage in the high-performance liquid chromatographic determination of polyphenolic compounds in sherry wines. Journal of Chromatography A, 1996, 730, 39-46.	1.8	21
39	Selection of column and gradient for the separation of polyphenols in sherry wine by high-performance liquid chromatography incorporating internal standards. Journal of Chromatography A, 1996, 724, 117-124.	1.8	35
40	Automated on-line-solid-phase extraction—high-performance liquid chromatography-diode array detection of phenolic compounds in sherry wine. Journal of Chromatography A, 1996, 750, 209-214.	1.8	40
41	High-performance liquid chromatographic analysis of polyphenolic compounds predominating in sherry musts. Journal of Chromatography A, 1993, 655, 227-232.	1.8	19