Hongqiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5882716/publications.pdf Version: 2024-02-01

HONCOLANG WANG

#	Article	IF	CITATIONS
1	A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2017, 2, .	17.6	159
2	A Highly Stretchable Capacitiveâ€Based Strain Sensor Based on Metal Deposition and Laser Rastering. Advanced Materials Technologies, 2017, 2, 1700081.	5.8	90
3	Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nature Communications, 2018, 9, 2495.	12.8	86
4	Motion Planning Based on Learning From Demonstration for Multiple-Segment Flexible Soft Robots Actuated by Electroactive Polymers. IEEE Robotics and Automation Letters, 2016, 1, 391-398.	5.1	60
5	Analyses and Solutions for the Buckling of Thin and Flexible Electrostatic Inchworm Climbing Robots. IEEE Transactions on Robotics, 2017, 33, 889-900.	10.3	42
6	A Crawler Climbing Robot Integrating Electroadhesion and Electrostatic Actuation. International Journal of Advanced Robotic Systems, 2014, 11, 191.	2.1	37
7	Biologically inspired electrostatic artificial muscles for insect-sized robots. International Journal of Robotics Research, 2021, 40, 895-922.	8.5	30
8	Electrostatic-motor-driven electroadhesive robot. , 2012, , .		27
9	Flexible Metal Electrodes by Femtosecond Laser-Activated Deposition for Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 11971-11980.	8.0	12
10	Underwater Selfâ€Powered Allâ€Optical Wireless Ultrasonic Sensing, Positioning and Communication with Ultrafast Response Time and Ultrahigh Sensitivity. Advanced Optical Materials, 2022, 10, .	7.3	12
11	So-EAGlove: VR Haptic Glove Rendering Softness Sensation With Force-Tunable Electrostatic Adhesive Brakes. IEEE Transactions on Robotics, 2022, 38, 3450-3462.	10.3	12
12	A thin electroadhesive inchworm climbing robot driven by an electrostatic film actuator for inspection in a narrow gap. , 2013, , .		9
13	Peel Force of Electrostatic Adhesion in Crawler-type Electrostatic Climbing Robots. Nihon AEM Gakkaishi, 2015, 23, 498-503.	0.1	8
14	Delicate manipulations with compliant mechanism and electrostatic adhesion. , 2016, , .		5
15	Modeling and Optimization of Electrostatic Film Actuators Based on the Method of Moments. Soft Robotics, 2021, 8, 651-661.	8.0	5
16	A Miniaturized Dual-Slider Linear Actuator Using Electrostatic Adhesion and Inertia Drive. Actuators, 2020, 9, 114.	2.3	3
17	Analyses and Optimization of Electrostatic Film Actuators Considering Electrical Breakdown. IEEE Robotics and Automation Letters, 2021, 6, 1152-1159.	5.1	3
18	Design and Experiment of a Soft Gripper Based on Cable-Driven Continuum Structures. , 2021, , .		1

	CHAHONS
A Soft Gripper Driven by Bellow Actuators and Twist Actuators for Dexterous Grasping. , 2021, , .	1