Ginger Shultz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5882247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cultural Relevance in Chemistry Education: Snow Chemistry and the Iñupiaq Community. Journal of Chemical Education, 2022, 99, 363-372.	2.3	8
2	The role of authentic contexts and social elements in supporting organic chemistry students' interactions with writing-to-learn assignments. Chemistry Education Research and Practice, 2022, 23, 189-205.	2.5	13
3	Considering alternative reaction mechanisms: students' use of multiple representations to reason about mechanisms for a writing-to-learn assignment. Chemistry Education Research and Practice, 2022, 23, 486-507.	2.5	15
4	PeerBERT: Automated Characterization of Peer Review Comments across Courses. , 2022, , .		6
5	Writing Assignments to Support the Learning Goals of a CURE. Journal of Chemical Education, 2021, 98, 510-514.	2.3	17
6	Developing Expertise in ¹ H NMR Spectral Interpretation. Journal of Organic Chemistry, 2021, 86, 1385-1395.	3.2	9
7	Reporting Biochemistry to the General Public through a Science Communication Writing Assignment. Journal of Chemical Education, 2021, 98, 930-934.	2.3	10
8	Students' meaningful learning experiences from participating in organic chemistry writing-to-learn activities. Chemistry Education Research and Practice, 2021, 22, 396-414.	2.5	37
9	University instructors' knowledge for teaching organic chemistry mechanisms. Chemistry Education Research and Practice, 2021, 22, 715-732.	2.5	10
10	Praxis of Writing-to-Learn: A Model for the Design and Propagation of Writing-to-Learn in STEM. Journal of Chemical Education, 2021, 98, 1548-1555.	2.3	25
11	Detecting High Orders of Cognitive Complexity in Students' Reasoning in Argumentative Writing About Ocean Acidification. , 2021, , .		7
12	Development of the NMR Lexical Representational Competence (NMR-LRC) Instrument As a Formative Assessment of Lexical Ability in ¹ H NMR Spectroscopy. Journal of Chemical Education, 2021, 98, 2786-2798.	2.3	8
13	Investigating students' reasoning over time for case comparisons of acyl transfer reaction mechanisms. Chemistry Education Research and Practice, 2021, 22, 364-381.	2.5	23
14	Organic Chemistry Students' Written Descriptions and Explanations of Resonance and Its Influence on Reactivity. Journal of Chemical Education, 2021, 98, 3431-3441.	2.3	17
15	"Most important is that they figure out how to solve the problem†how do advisors conceptualize and develop research autonomy in chemistry doctoral students?. Higher Education, 2020, 79, 981-999.	4.4	11
16	Capturing student conceptions of thermodynamics and kinetics using writing. Chemistry Education Research and Practice, 2020, 21, 922-939.	2.5	19
17	Eliciting student thinking about acid–base reactions <i>via</i> app and paper–pencil based problem solving. Chemistry Education Research and Practice, 2020, 21, 878-892.	2.5	28
18	Exploring Student Thinking about Addition Reactions. Journal of Chemical Education, 2020, 97, 1852-1862.	2.3	20

GINGER SHULTZ

#	Article	IF	CITATIONS
19	What students write about when students write about mechanisms: analysis of features present in students' written descriptions of an organic reaction mechanism. Chemistry Education Research and Practice, 2020, 21, 1148-1172.	2.5	37
20	Investigation of chemistry graduate teaching assistants' teacher knowledge and teacher identity. Journal of Research in Science Teaching, 2020, 57, 943-967.	3.3	15
21	"l Wanna Just Google It and Find the Answerâ€: Student Information Searching in a Problem-Based Inorganic Chemistry Laboratory Experiment. Journal of Chemical Education, 2019, 96, 618-628.	2.3	18
22	Application and testing of a framework for characterizing the quality of scientific reasoning in chemistry students' writing on ocean acidification. Chemistry Education Research and Practice, 2019, 20, 484-494.	2.5	21
23	Constraints on organic chemistry students' reasoning during IR and ¹ H NMR spectral interpretation. Chemistry Education Research and Practice, 2019, 20, 522-541.	2.5	21
24	Analysis of the role of a writing-to-learn assignment in student understanding of organic acid–base concepts. Chemistry Education Research and Practice, 2019, 20, 383-398.	2.5	33
25	Characterizing Peer Review Comments and Revision from a Writing-to-Learn Assignment Focused on Lewis Structures. Journal of Chemical Education, 2019, 96, 227-237.	2.3	34
26	Unpacking graduate students' knowledge for teaching solution chemistry concepts. Chemistry Education Research and Practice, 2019, 20, 258-269.	2.5	14
27	Teaching assistants' topic-specific pedagogical content knowledge in ¹ H NMR spectroscopy. Chemistry Education Research and Practice, 2018, 19, 653-669.	2.5	25
28	Investigation of the Factors That Influence Undergraduate Student Chemistry Course Selection. Journal of Chemical Education, 2018, 95, 913-919.	2.3	9
29	Investigation of the role of writing-to-learn in promoting student understanding of light–matter interactions. Chemistry Education Research and Practice, 2018, 19, 807-818.	2.5	27
30	Identifying and Remediating Student Misconceptions in Introductory Biology via Writing-to-Learn Assignments and Peer Review. CBE Life Sciences Education, 2018, 17, ar28.	2.3	41
31	Writing in the STEM classroom: Faculty conceptions of writing and its role in the undergraduate classroom. Science Education, 2018, 102, 1007-1028.	3.0	25
32	Investigation of the Influence of a Writing-to-Learn Assignment on Student Understanding of Polymer Properties. Journal of Chemical Education, 2017, 94, 1610-1617.	2.3	36
33	The development of a tool for measuring graduate students' topic specific pedagogical content knowledge of thin layer chromatography. Chemistry Education Research and Practice, 2016, 17, 700-710.	2.5	20
34	Student Development of Information Literacy Skills during Problem-Based Organic Chemistry Laboratory Experiments. Journal of Chemical Education, 2016, 93, 413-422.	2.3	27
35	Writing-to-Learn the Nature of Science in the Context of the Lewis Dot Structure Model. Journal of Chemical Education, 2015, 92, 1325-1329.	2.3	36
36	Using Jigsaw-Style Spectroscopy Problem-Solving To Elucidate Molecular Structure through Online Cooperative Learning. Journal of Chemical Education, 2015, 92, 1188-1193.	2.3	27

GINGER SHULTZ

#	Article	IF	CITATIONS
37	Impact of General Chemistry on Student Achievement and Progression to Subsequent Chemistry Courses: A Regression Discontinuity Analysis. Journal of Chemical Education, 2015, 92, 1449-1455.	2.3	16
38	Eliciting Student Explanations of Experimental Results Using an Online Discussion Board. Journal of Chemical Education, 2014, 91, 684-686.	2.3	10
39	Preparation of Polymers Containing Metal–Metal Bonds along the Backbone Using Click Chemistry. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 511-518.	3.7	21
40	Preparation of Functionalized Organometallic Metal–Metal Bonded Dimers Used in the Synthesis of Photodegradable Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 423-435.	3.7	20
41	Preparation of Photoreactive Oligomers by ADMET Polymerization of [(C ₅ H ₄ (CH ₂) ₈ CHâ•€H ₂)Mo(CO) ₃ Macromolecules, 2009, 42, 7644-7649.	.] ⊲sa b>2<	/s21\$0>.
42	Preparation of Photodegradable Oligomers Containing Metal–Metal Bonds Using ADMET. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 149-154.	3.7	19
43	Transition-Metal-Containing Polymers by ADMET: Polymerization of <i>cis</i> -Mo(CO) ₄ (Ph ₂ P(CH ₂) ₃ CHâ•€H ₂) <sul Macromolecules, 2008, 41, 5555-5558.</sul 	b> 2 8/sub>	. 25
44	Utilizing Peer Review and Revision in STEM to Support the Development of Conceptual Knowledge Through Writing. Written Communication, 0, , 074108832110060.	1.3	13
45	Building Personal Connections to Organic Chemistry through Writing. Journal of Chemical Education, 0, , .	2.3	3